
Virtual Environments for Training

Quarterly Status Report
(11)

April 1 through June 30,1998

Submitted by R. Stiles
Lockheed Martin

Advanced Technology Center

Prepared for
Office of Naval Research

Contract N00014-95-C-0179
September 1998

(CLIN 0004, CDRL A001 Progress Report)

Abstract: This report describes the Lockheed-Martin VET team efforts and accomplishments
during the eleventh quarter of the contract. Activity is reported for each of the software
components of the Training Studio: VIVIDS, Steve, and Vista, as well as domain development
and evaluation study. This report contains material submitted for subcontracts by Dr. Allen
Munro at USC/BTL, Dr. Lewis Johnson at USC/ISI.

Progress on productization of the VET Training Studio software includes increased robustness for
Vista virtual environment display and interaction services, a new capability to use the STEVE
visual representation within VIVIDS, and improved visual and spoken dialog capabilities for
STEVE.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,

either expressed or implied, of the Office of Naval Research or any other part
of the U.S. Government.

DTIC QUALITY INSPECTED 4

1 SUMMARY 1

2 INTRODUCTION 1

3 METHODS, ASSUMPTIONS & PROCEDURES 2

3.1 ADVANCED TECHNOLOGY CENTER 2
3.2 INFORMATION SCIENCES INSTITUTE 2
3.3 BEHAVIORAL TECHNOLOGY LABORATORY 2

4 RESULTS AND DISCUSSION 3

4.1 SOFTWARE DEVELOPMENT 3
4.1.1 Simulation-based Training 3
4.1.2 Pedagogical Agent Development 4
4.1.3 Virtual Environment Interaction 6
4.1.4 Productization Efforts 6

4.2 MEETINGS 7
4.3 PRESENTATIONS AND PUBLICATIONS 7

5 CONCLUSIONS 7

SYMBOLS, ABBREVIATIONS & ACRONYMS 9

APPENDIX A A

ANIMATED AGENTS FOR PROCEDURAL TRAINING IN VERTUAL REALITY:
PERCEPTION, COGNITION, AND MOTOR CONTROL A

APPENDIX B B

PEDAGOGICAL AGENTS B

Lockheed Martin VET Quarterly Report July 1998

1 Summary
This report describes efforts for
productization of the Training Studio
software for the Virtual Environments for
Training contract during the period from
April 1- June 30,1998.

The Lockheed Martin Advanced Technology
Center oversaw productization for itself and
subcontractors, releasing several
improvements to Vista for speeding up 3D
text display and modification, and selective
loading of inlined 3D models. As part of
productization, standalone Performer VRML
libraries were updated for eventual release
to our subcontractors and select government
agencies.

At Behavioral Technology, research and
development during this quarter has
included efforts in the following areas:

• Student interface improvements.

• Additional improvements in the
integration of a VET-featured
VIVIDS with the other VET
components, including Vista,
autonomous agents, TrishTalk, and
the VET sound server.

• Improved participant handling in
VIVIDS instruction.

• Allowing the instruction author to
use a 'directable' Steve for certain
types of instructional remediation
within VIVIDS structured lessons.

During this quarter, ISI continued research
and development on their pedagogical agent,
Steve, greatly improving visual and spokent
dialog with the student. In addition, Ben
Moore continued improving the speech
recognition component that allows people to
communicate with agents in the virtual
environment, making a release of this Java-
based interface, RecApple, just prior to our
July 9 ONR demo in Arlington, VA.

2 Introduction
This report describes the efforts of Lockheed
Martin, USC/ISI, and USC/BTL for the
Virtual Environments for Training contract
during the period from April 1 - June 30,1998.
The purpose of our work is to explore,
develop, and evaluate novel techniques for
incorporating automated individual and
team instruction in virtual environments.

The ATC team extended the Vista Viewer
capabilities for human-computer interaction
in a networked, real-time immersive training
environment, continued work to optimize the
Vista software, and supported the
development requirements of USC colleagues
at ISI and BTL. Efforts toward
productization of the Training Studio were
increased during this period.

The Lockheed Martin team members for the
VET project are: Randy Stiles (Program
Manager), Sandeep Tewari, Mihir Mehta,
and Laurie McCarthy.

At ISI, the STEVE pedagogical agent visual
and spoken dialog capabilities have been
improved. Steve is now much more responsive
to the student. To achieve this, the building
blocks for Steve's dialogue have been
decomponsed into smaller pieces. This
decomposition allows Steve to respond to
interruptions — including changes in the
virtual world as well as interruptions from
the student — more frequently.

During the second quarter of 1998 the
USC/ISI team consisted of the following
individuals: Dr. Lewis Johnson (principal
investigator), Dr. Jeff Rickel (research
scientist), Mr. Marcus Thiebaux
(programmer). The project was also assisted
by Richard Angros (a graduate student), Ben
Moore, and Anna Romero (undergraduate
students), all working on the AASERT grant
associated with the VET project. Romero
stopped working on the project in May, and
Moore returned to the project in late May

The authoring system for building simulation
behaviors and structured tutorials for virtual
environments is called VIVIDS (Virtual

LMMS Contract N00014-95-C-0179 VET-Q11-R3

Lockheed Martin VET Quarterly Report July 1998

Interactive Intelligent Tutoring System
Development Shell). During this quarter of
the contract productization efforts have been
undertaken to ensure the robustness,
completeness, and the openness of the
authoring and delivery system and of the
Gas Turbine Engine simulation constructed
using VIVIDS.

During the second year of this project, the
USC/BTL team for the VET project consisted
of the following individuals: Dr. Allen
Munro (Principal Investigator), Dr. Quentin
Pizzini, and David Feldon.

3 Methods, Assumptions &
Procedures

We have been conducting a number of
research investigations, each of which is
directed at one or more of the objectives
mentioned in the introduction. For each of
the three system components, one or more
members of the primary research team, in
collaboration conduct these investigations
with the other VET project participants.

3.1 Advanced Technology Center
The research effort at the ATC has operated
on several hypothesis; 1) a component-based
virtual environment architecture can support
the integration of pedagogical agents and
simulation-based training 2) immersed,
networked interaction with 3D (VRML)
models can be isolated to the virtual
environment interaction component (Vista)
3) instructional interaction in a virtual
environment can- be specific to each
participant, supporting team training and
still accomplishing individual remediation.

The ATC approach focuses on providing
those capabilities that accomplish
communications and scene display and
manipulation for Steve and VIVIDS, as well
as optimizing human interactions within the
virtual environment. New capabilities are
developed, tested, and released in a fast
cycle to collaborating VET organizations for
further evaluation and critique. Other
capabilities are developed in response to a
direct request by one of the other team
members; or provided as a solution to a

problem encountered by one of the
collaborators.

3.2 Information Sciences Institute

USC/ISI's focus has been on incorporating
pedagogical capabilities in an intelligent
agent architecture called Steve. We are
investigating the following hypotheses: 1)
that an agent architecture and knowledge
representation can be developed that permits
autonomous agents to act as guides, mentors,
and team members, 2) that machine learning
and high level languages can be employed to
assist instruction developers in creating
agent-based instruction, and 3) virtual
environment technology enables new types of
interactions between trainees and
instructional systems, which improve the
quality of instruction provided by the
instructional systems.

USC/ISI research methodology is as follows.
We identify a new capability that, if
incorporated into Steve, would contribute to
validating one of our research hypotheses.
We then design a set of extensions to the
Steve system that implements the
capability. We develop a prototype
implementation of the capability, and
conduct a series of demonstrations and irt-
house tests. We then make arrangements for
further evaluation of the capabilities by our
partner organizations or ourselves.

3.3 Behavioral Technology
Laboratory

The VET research effort at Behavioral
Technology Laboratory (USC), previously
demonstrated the correctness of the
hypothesis that the 2D behavior authoring
interface of RIDES can be adapted and
extended to provide an effective and natural
way to specify simulations for virtual
environment training. The VIVIDS
authoring system constitutes the first system
for authoring (as opposed to programming)
robust complex interactive simulations for
virtual environments. Furthermore, these
authored simulations have features that
support the near-automatic construction of
certain types of structured tutorials. The
combination of productive simulation
authoring with efficient tutorial

LMMS Contract N000U-95-C-0179 VET-Q11-R3

Lockheed Martin VET Quarterly Report July 1998

development is designed to make feasible
the application of virtual environment
technologies to a very wide range of
technical training requirements at reasonable
cost. Extensions to the original VIVIDS
system permit several levels of collaboration
with agents and support team training in
virtual environments.

USC/BTL methodology has been to
progressively adapt VIVIDS functionalities
to provide appropriate simulation and
instruction services for a virtual environment
delivered by Vista, to provide services to the
Steve autonomous agent, and to exploit
appropriately the speech (TrishTalk) and
sound capabilities of the VET environment.
Developing large simulations and instruction
materials using the revised authoring tools
tests these new capabilities. Two levels of
formative evaluation are pursued: both the
usability of the revised authoring system
and the functionality of the tutorials it
produces must be examined. Based on, first,
in-house evaluations, and, after initial
revisions, the evaluations of our research
partners at Lockheed Martin, at USC's
Information Sciences Institute, and at the
U.S. Air Force Laboratory, further
modifications are made, and the tool-
development, authoring and testing cycle
resumes.

4 Results and Discussion

This section covers the results accomplished
during this reporting period and discusses the
significance of this work in terms of the VET
project goals as well as contributions to
respective research communities at large.

4.1 Software Development

Lockheed Martin, USC/BTL, and USC/ISI
each accomplished major milestones
regarding development of their respective
components: Vista Viewer, VIVIDS, and
Steve.

4.1.1 Simulation-based Training

This section describes the research and
development efforts with respect to the
VIVIDS component. Vivids changes were
focused on: improvements in the integration

of a VET-featured VIVIDS with the other
VET components, enhancing the Gas Turbine
Engine (GTE) control system simulation,
improving the immersed student interface,
and 'productizing' the prototype VIVIDS for
improved operation in VET systems.

4.1.1.1 Student Interface Improvements
The graphical user interface that supports
student commands in VET during VIVIDS
instruction was significantly improved.
Contributing developments include the
addition of clear text labels rather than
obscure icons, and new instructional
commands: Jump to viewpoint and Repeat
last utterance

Previously, the instructional command
interface was composed of an opaque palette
with three icons, the meanings of which
were not always clear to students. The same
icon had different meanings depending on the
instructional mode being used. When a
structured lesson was being presented, for
example, a question-mark icon meant, "I
don't know the answer. Show me." When the
student was engaged in the free-
play/browsing mode, however, the question-
mark icon meant, "I'm about to touch an object
for which I'd like to see available textual
information." Using text labels on the
palette for the available commands
eliminated these sources of confusion.

New instructional commands were added to
the palette, including "Change Viewpoint"
(jump to the next viewpoint in a previously
authored list of viewpoints) and "Repeat
Text" (repeat the last thing that was said
using the VET speech output system).

4.1.1.2 Improved Component Integration
VIVIDS now collaborates more effectively
with Vista, Steve, TrishTalk, and the sound
server, by actively tracking their presence in
the instructional environment. VIVIDS is
aware of the Activity State of these
components and maintains an internal
representation of the active components in
the VET instructional environment. If, for
example, TrishTalk were not present, the old
VIVIDS could hang indefinitely while
waiting for a signal that Trish had finished

LMMS Contract N000U-95-C-0179 VET-Q11-R3

Lockheed Martin VET Quarterly Report July 1998

speaking an instructional utterance that
VIVIDS had sent to it. This kind of problem
can now be avoided for any case in which a
collaborating component exits normally.
When a particular component (such as the
speech server) is absent, VIVIDS does not
attempt to access that component. (Of course,
if a collaborating component crashes,
VIVIDS is not aware of its absence.)

4.1.1.3 Improved Participant Handling.
VIVIDS now automatically retrieves
participant names from system information.
In previous releases, it was necessary to enter
the names of the participants in a team
training exercise into each computer.

4.1.1.4 Using Steve to Enhance VIVIDS
Instruction

VIVIDS can now exploit the Soar-
independent Steve provided by our
colleagues at ISI. This makes possible a new
mode of instruction that can take advantage
of the visual cues provided by using a
graphically embodied agent in the rapidly
authorable structured exercises that can be
created with VIVIDS. Authors can specify
that certain instructional items can make use
of Steve for presentations or for
remediations. The VIVIDS instructional
item types that support the optional use of
Steve are:

• Highlight Item. When Steve is used
to highlight an item, he moves to
the item and points at it with his
right hand.

• Control Item - Remediation. When a
student fails to perform a required
control manipulation, VIVIDS can
now demonstrate the correct action
by having Steve move to the control
and carry out the action, using his
left hand.

• Indicator Item - Remediation. If a
student fails to make an indicator
observation correctly, authors can
specify a remediation in which
Steve moves to the indicator, points
to it, and tells the student what
value it displays.

• Goal Item - Remediation. When
goals are not achieved, authors can

use Steve to carry out a set of actions
that achieves the goal, and they can
have Steve point out those aspects of
the new situation that indicate that
the goal has been achieved.

Steve can also be made to follow a path from
one object to another without passing through
walls. Sample training materials (lessons)
were developed in the content of the Gas
Turbine Engine simulation to test the
automatic use of the 'directable' Steve in
VIVIDS structured lessons.

4.1.2 Pedagogical Agent Development

This section relates improvements to
capabilities of the Steve Pedagogical Agent
in the use of dialog-centered speech, motor
control in a complex graphical setting,
Stevels graphical representation, and task
authoring. It also relates ISI efforts in
developing a sound server.

4.1.2.1 Dialogue
During this quarter, Rickel made significant
improvements in Steve's dialogue
capabilities, enhancing the timing and
completeness of visual and spoken dialog
with the student.

Steve is now much more responsive to the
student. To achieve this, Rickel decomposed
the building blocks for Steve's dialogue into
smaller pieces. This decomposition allows
Steve to respond to interruptions — including
changes in the virtual world as well as
interruptions from the student — more
frequently.

Steve's ability to take turns during a
dialogue has been improved: 1) after telling
or showing the student something, Steve now
looks at the student and pauses (to give the
student an opening) before continuing, and 2)
Steve now recognizes when a student begins
speaking and looks at the student while
listening until the speech is complete.
Previously, Steve could only detect when the
student finished saying something.

Steve's dialogue capabilities are more robust
than before: he now tries to respond to all

LMMS Contract N00014-95-C-0179 VET-Q11-R3

Lockheed Martin VET Quarterly Report July 1998

requests and questions, even if they come at
unusual times.

Steve's text generation has been improved:
his answers to questions are less terse than
before.

Moore improved Steve's use of intonation:
after some experimentation, we were able to
make his intonation and spoken emphasis
sound much more natural by raising the upper
limit on his pitch range. Moore is also
studying other ways of improving Steve's
prosody.

Rickel is supervising a Master's student this
summer, Sung-Oh Jung, who is investigating
the addition of plan recognition capabilities
to Steve. If Steve had a better ability to
assess the student's current intentions and
plans, he could better tailor his suggestions
and feedback. (Sung-Oh is not currently
receiving any financial support for his work.)

We view Steve's dialogue capabilities as a
crucial area for future research, and will be
continuing work in this area under the VET
AASERT grant.

4.1.2.2 Motor Control

During this quarter, we also improved
Steve's motor control capabilities.

Thiebaux added arms to Steve's body and
designed and implemented the animation
primitives for the arms. These animation
primitives are simpler and more efficient
than approaches based on inverse
kinematics, yet they are very robust and
effective, providing very natural-looking
motion for our purposes. He also added
hands with more degrees of freedom and
smoother animation than our old approach.
Rickel integrated these new body parts into
Steve's motor control module. The result is a
much more natural-looking virtual human.
Response from everyone who has seen the
new body has been very positive.

Rickel and Thiebaux extended Steve so that
he now attaches himself to his student's
display when he first comes up and when he
is monitoring the student. This allows him to

follow the student around. This technique
was previously used with the old Inventor
body, but hadn't been possible with the new
VRML body until now. Also, unlike the old
Inventor body, Steve can now look around
when attached to the student's display.

As her senior project under the supervision of
Rickel, Anna Romero completed a web-based
interface for experimenting with Steve's
facial expressions. The interface allows
people to create new facial expressions by
using sliders to manipulate Steve's eyes,
eyelids, eyebrows, and lips, and she also
created a set of expressions covering a range
of different emotions that could be useful in a
tutorial context. Although these expressions
have not yet been integrated into Steve's
tutorial behavior, Anna's work lays the
foundation for such extensions.

Marcus Thiebaux has packaged up and
documented his code for providing human
figure animation in Vista. This code provides
low-level animation primitives for
controlling Steve's body. Currently, the code
is driven by Steve's motor control module.
However, by making this code available to
our other VET partners, they can make use of
Steve-like agents for their own purposes. In
particular, Pizzini of BTL is adding code to
allow VIVIDS to control a Steve-like agent
to guide the student around during
familiarization lessons. Although their
agent will not be as intelligent or reactive as
Steve, they feel that this approach will be
more effective than their previous methods
for guiding the student and highlighting
objects.

4.1.2.3 Preparing for Field Use

As the VET project draws to a close, our focus
has shifted towards making Steve robust
enough for eventual field use at the end of
the project. We continued our progress in that
direction this quarter. Rickel has focused on
testing Steve under a wide range of
conditions, and has made some performance
optimizations. Thiebaux has also been
making performance optimizations on his
code to control the animation of Steve's body.
We have run some informal evaluations to
assess usability issues, and we expect to

LMMS Contract N00014-95-C-0179 VET-Q11-R3

Lockheed Martin VET Quarterly Report fuly 1998

continue such experiments. To our
documentation on how to use Steve, Rickel
added documentation on authoring Steve.
Angros completed a tutorial on how to author
Steve by demonstration, and he is designing
an evaluation of his dissertation work.
Finally, Rickel made releases of Steve, the
graphical models for Steve, and TrishTalk
(the text-to-speech component) to all our
VET partners. We expect to make one more
release of Steve during the next quarter; that
will serve as the final release under VET
funding, and any subsequent releases will be
based on the work of students under VET
AASERT funding.

4.1.2.4 Domain Development

Our work on domain development is winding
down, but we did perform some work in that
area during this quarter. We spent
significant time testing Steve in both the
HPAC and GTE environments, including
working with students on individual tasks
and with students and agents on team tasks.
We made some improvements to Steve based
on this testing, and we also extended Steve's
domain knowledge in some places, notably
his knowledge of where to stand relative to
particular objects and some of his text strings
for describing task steps.

4.1.3 Virtual Environment Interaction

Virtual environment interaction, where 3D
scenes and objects are displayed and used in
real-time, is the ATC's primary technical
area. The interaction capability is realized
in the Vista software component. During
this quarter, Vista development centered on
fleshing out text display and library support
for agent optimization.

4.1.3.1 External Library Functions

Two new external library functions were
developed for USC/ISI colleagues to use/test
for controlling VRML models and to speed up
agent rendering. The first of these is a
selective inline capability that can be used
to add to a VRML scene. The second is a new
node name lookup that more efficiently finds
node pointers used during figure animation.

4.1.3.2 Dynamic 3D Text

Vista development included improved
dynamic 3D text capabilities, including new
support for the VRML text node, resulting
from an example from colleagues at Brooks
Air Force Base as well as Tewari's work on
elimination of multiple pfFont
initializations. The improved speed for
changing text allowed significantly faster
rendering of text menus.

4.1.3.3 GTE Model

During this quarter, a new version of the GTE
models was released. The updated model
provided invisible waypoint objects which to
allow Steve to travel while near the pipes in
the engine room. Also included were
proximity sensors that control viewpoint
snapping turned off, so that you can fly
outside or above of the engine room and
central control station without getting
popped back to a reference location. This is
useful to see from above, or pulling a little
further out, switching off a lot of geometry to
test the update rate for multiple Steve agent
visual representations.

4.1.3.4 Profiler

As part of the productization task,
modification to the Profiler was begun to
allow all Training Studio processes to be
controlled from one central interface. As part
of this effort, Vista's response to TScript
vrStop was modified. Now, vrStop must be
qualified by participant to stop Vista; i.e.,
vrStop all will stop everything, but vrStop
vista <participant> will only stop the Vista
that user/student <participant> is using,
while vrStop vista all will stop all Vistas.

4.1.4 Productization Efforts

As discussed in the last report,
productization is a major task during Option
2 of the VET contract and underlies the
design and development of the system
extensions during this last phase. This
quarter saw continued development and
refinement of interfaces to each of Vista,
VIVIDS, and Steve components for
authoring. These efforts are described in the
separate descriptions of each component in
sections 4.1.1 - 4.1.3 of this report. Component

LMMS Contract N00014-95-C-0179 VET-Q11-R3

Lockheed Martin VET Quarterly Report July 1998

documentation has been collected and
organized into a draft reference manual.
This documentation will be reviewed and
revised by all team members at a planning
meeting scheduled for July/early August.
The final version of the manual will provide
both the descriptions and instructions of
Training Studio use and operations.

4.2 Meetings
In preparation for our July 9 demo to ONR in
Washington DC, Randy Stiles of the LM
ATC met with Ben Moore of USC/ISI to
prepare the Maximum Impact for use
standalone at ONR, test a new revision of
the Java-based speech recognition interface
RecAppl, and test the standalone network
configuration of 3 workstations for the demo.

4.3 Presentations and Publications
McCarthy presented Enabling Team Training
in Virtual Environments at the
Collaborative Virtual Environments (CVE)
98 conference in Manchester, UK. The paper
was the result of collaboration with Stiles,
Johnson, and Rickel. The presentation
included an updated video of our most recent
developments. The authors have been
invited to extend the paper for journal
publication in a special issue of the Virtual
Reality: Research, Developments and
Applications.

Steve was featured in several papers and
presentations during this quarter. Rickel and
Johnson revised and submitted the final
version of their, paper for the journal
Applied Artificial Intelligence (included
with this report). Rickel and Johnson revised
and submitted the final version of their
paper for the AAAI workshop on Multi-
Modal Human-Computer Interaction.

Steve was featured in a survey paper by
Elliott and Brzezinski in AI Magazine 19(2).
Rickel and Johnson submitted a paper to the
ITS '98 Workshop on Pedagogical Agents.
(Both Rickel and Johnson are on the program
committee.) Rickel and Johnson submitted a
paper to the First Workshop on Embodied
Conversational Characters.

Johnson gave a talk at the Second
International Conference on Autonomous
Agents. Johnson gave an invited talk at the
International Workshop on Interaction
Agents in LAquila, Italy. Rickel gave an
invited talk at the Virtual Humans 3
conference. Rickel gave a talk at USC's
Center for Scholarly Technology. Both
Johnson and Angros gave talks at the Soar
Workshop.

5 Conclusions
Progress continued over the 11th quarter with
special emphasis on productization of the
system. Development of authoring tools is
important during this phase and efforts in
this area are underway for each Training
Studio component. Final documentation and
manuals are being developed and the video
produced July 1997 has been updated with
research results through March 1998. A final
updated video is being planned.

The next quarter will complete the
development effort on the Training Studio.
Demonstration of the system to date will be
presented at ONR in July. The ATC focus is
on ensuring smooth closure and completion of
contract deliverables. Plans for closure will
be made during a development team meeting
to be held in the upcoming quarter.

During the next quarter, ISI plans to complete
work under the VET grant and continue
research via students under AASERT funding.
ISIÄs main focus under the VET funding will
be to support a demo at ONR on July 9, make
a final release of all VET software, and
complete documentation and final report. In
addition, Rickel will give an invited talk in
London at the Virtual Reality for Education
and Training conference in July, and will
demo Steve at AAAI later that month.
Under AASERT funds, USC/ISI will continue
research and development on pedagogical
agents for training in virtual reality through
their students Ben Moore, Richard Angros,
and our new Ph.D. student, Taylor Raines.

In the coming quarter, USC/BTL efforts on
the VET project will be completed. Ongoing
VIVIDS instruction enhancements will be
tested in the context of the VET Gas Turbine

LMMS Contract N00014-95-C-0179 VET-Q11-R3

Lockheed Martin VET Quarterly Report July 1998

Engine control systems trainer. In
collaboration with colleagues at ISI and at
Lockheed Martin, we will contribute to a
Final Report on the VET project.

During the next quarter, the ATC will
oversee the packaging of the Training Studio
components, drafting of a user's guide, final
report, and summary video, as well as
exploration of transition opportunities.

LMMS Contract N000U-95-C-0179 8 VET-Q11-R3

Lockheed Martin VET Quarterly Report July 1998

Symbols, Abbreviations &
Acronyms

AAAI

AASERT

AFHRL

ATC

BTL

COTR

DIS

GTE

HPAC

ICAI

IPEM

ISI

ITS

American Association for Artificial
Intelligence
ONR Grant for graduate student
development at USC/BTL and
USC/ISI associated with VET
contract
U.S. Air Force Human Resources
Laboratory
Advanced Technology Center, located
In Palo Alto, CA, part of Lockheed
martin Missiles & Space
Behavioral Technologies
Laboratories, located in Redondo
Beach, CA, a performing organization
in the Lockheed Martin VET effort, a
laboratory of the University of
Southern California.
Contracting Office Technical
Representative. The Program Manager
or Program Officer from the funding
agency who provides technical
direction for the program.
Distributed Interactive Simulation, a
real-time distributed message protocol
used in training and operational
simulations developed by ARPA and
now an International Standards
Organization standard.
Gas Turbine Engine - similar to jet
engine, which drives propulsion of a
Navy Ship. In our case we are usually
referring to the LM2500 Gas Turbine
Engine on USS Arleigh Burke (DDG-
51) ships.
High Pressure Air Compressor, an oil-
free air compressing system prevalent
on many navy vessels, which prepares
compressed air for gas turbine engines.
Intelligent Computer Aided Instruction,
a method of instruction whereby an
intelligent model of a student's
understanding is used to guide a
student during instruction using a
computer.
Integrated Planning, Execution and
Monitoring architecture for
coordinating different planning
strategies as required for SOAR
activities.
Information Sciences Institute in
Marina del Rey, CA, a performing
organization in the Lockheed Martin
VET effort, affiliated with the
University of Southern California in
Los Angeles, CA.
Intelligent Tutoring Systems O an AI
approach where the student, domain,
and instructional techniques are
modeled and used to actively instruct
the student

MCO

ONR

RIDES

SIGART

SGI

SOAR

STEVE

Tcl/Tk

TScript

URL

use
VE

VET

VR

VRIDES

VIVIDS
VRML

WWW

Multi-Channel Option for Silicon
Graphics Onyx Workstations, a
necessary option to provide separate
video channels used in immersive
virtual environment displays.
Office of Naval Research, the funding
agency for the VET effort.
Rapid Instructional Development for
Educational Simulation
Special Interest Group on Artificial
Intelligence
Silicon Graphics Incorporated, a
workstation company whose whole
culture centers around fast 3D
graphics.
A platform independent, cognitive
architecture based on a production
system which seeks to address those
capabilities required of a general
intelligent agent.
SOAR Training Expert for Virtual
Environments
A windowing interface toolkit
assembled around a UNIX-shell like
interpreter originally developed at UC
Berkeley.
Training Script message protocol for
virtual environments
Uniform resource locator, a tag that
indicates a media format and location
on the Internet as part of the World
Wide Web.
The University of Southern California.
Virtual Environment, a 3D visual
display and accompanying simulation
which represent some aspect of an
environment. Expanded forms of VE
also address other senses such as
audio, touch, etc.
Virtual Environments for Training, a
Defense Department focused research
initiative concerned with applying
virtual environment technology to
training
Virtual Reality see Virtual
Environment
Virtual Rapid Instructional
Development for Educational
Simulation. A special version of the
RIDES program for use in developing
simulations and tutorials that
collaborate with Vista Viewer and
Soar to deliver training in virtual
environments.
See VRIDES above
Virtual Reality Modeling Language, an
analog to HTML used for documents,
but focused on 3D objects and scenes
for the World Wide Web.
World-Wide Web, a system
incorporating the HTTP message
protocol and the HTML document
description language that allows
global hypertext over the Internet.

LMMS Contract N00014-95-C-0179 VET-Q11-R3

Lockheed Martin VET Quarterly Report July 1998

Appendix A

Animated Agents for Procedural Training in Virtual Reality: Perception,
Cognition, and Motor Control

To appear in
Applied Artificial Intelligence

LMMS Contract N00014-95-C-0179 A VET-Q11-R3

To appear in Applied Artificial Intelligence

Animated Agents for Procedural Training in Virtual Reality:
Perception, Cognition, and Motor Control

Jeff Rickel and W. Lewis Johnson
Information Sciences Institute & Computer Science Department

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292-6695

rickel@isi.edu, johnson@isi.edu
http://www.isi.edu/isd/VET/vet.html

May 4, 1998

Abstract

This paper describes Steve, an animated agent that helps students learn to per-
form physical, procedural tasks. The student and Steve cohabit a three-dimensional,
simulated mock-up of the student's work environment. Steve can demonstrate how to
perform tasks and can also monitor students while they practice tasks, providing as-
sistance when needed. This paper describes Steve's architecture in detail, including
perception, cognition, and motor control. The perception module monitors the state of
the virtual world, maintains a coherent representation of it, and provides this informa-
tion to the cognition and motor control modules. The cognition module interprets its
perceptual input, chooses appropriate goals, constructs and executes plans to achieve
those goals, and sends out motor commands. The motor control module implements
these motor commands, controlling Steve's voice, locomotion, gaze, and gestures, and
allowing Steve to manipulate objects in the virtual world.

1 Introduction

To master complex tasks, such as operating complicated machinery, people need hands-on
experience facing a wide range of situations. They also need a mentor that can demon-
strate procedures, answer questions, and monitor their performance, and they may need
teammates if their task requires multiple people. Since it is often impractical to provide
such training on real equipment, we are exploring the use of virtual reality instead; training
takes place in a three-dimensional, interactive, simulated mock-up of the student's work
environment. Since mentors and teammates are often unavailable when the student needs
them, we are developing an autonomous, animated agent that can play these roles. The
agent's name is Steve (Soar Training Expert for Virtual Environments).

Steve integrates methods from three primary research areas: intelligent tutoring sys-
tems, computer graphics, and agent architectures. This novel combination results in a
unique set of capabilities. Steve has many pedagogical capabilities one would expect of an
intelligent tutoring system. For example, he can answer questions such as "What should
I do next?" and "Why?". However, because he has an animated body, and cohabits the
virtual world with students, he can provide more human-like assistance than previous dis-
embodied tutors. For example, he can demonstrate actions, use gaze and gestures to direct

the student's attention, and guide the student around the virtual world. Virtual reality is an
important application area for artificial intelligence because it allows more human-like in-
teractions among synthetic agents and humans than desktop interfaces can. Finally, Steve's
agent architecture allows him to robustly handle a dynamic virtual world, potentially pop-
ulated with people and other agents; he continually monitors the state of the virtual world,
always maintaining a plan for completing his current task, and revising the plan to handle
unexpected events.

Steve consists of a set of domain-independent capabilities that utilize a declarative rep-
resentation of domain knowledge. To teach students about the tasks in a new domain,
someone must provide the appropriate domain knowledge. We assume that this person will
be a course author, a person with enough domain knowledge to create a course for teaching
others. Importantly, we do not assume that this person has any programming skills. Ensur-
ing that Steve only relies on types of knowledge that a course author can provide imposes
strong constraints on Steve's design.

Steve is designed to coexist with other people and agents in a virtual world. Our goal is
to support team training, whöre teams of people, possibly at different locations, can inhabit
the same virtual world and learn to perform tasks as a team. Agents like Steve can play
two roles in such training: they can serve as tutors for individual team members, and they
can play the role of missing team members. We have recently extended Steve to understand
team tasks and function as a team member. We will not address those issues in this paper;
here, we focus primarily on Steve's ability to work with a single student on a one-person
task. However, as will become clear, ensuring that Steve can function in an environment
with other people and agents has placed important constraints on Steve's design.

This paper describes Steve's architecture in detail, including perception, cognition, and
motor control. First, Section 2 illustrates Steve's capabilities via an example of Steve and
a student working together on a task. Next, as background, Section 3 briefly describes
the larger software architecture for virtual worlds of which Steve is a part; more detail is
available in an earlier paper (Johnson et al. 1998). Finally, Section 4 gives an overview of
Steve's architecture, and the remainder of the paper provides the details.

2 Steve's Capabilities

To illustrate Steve's capabilities, suppose Steve is demonstrating how to inspect a high-
pressure air compressor aboard a ship. The student's head-mounted display gives her a
three-dimensional view of her shipboard surroundings, which include the compressor in
front of her and Steve at her side. As she moves or turns her head, her view changes
accordingly. Her head-mounted display is equipped with a microphone to allow her to
speak to Steve.

After introducing the task, Steve begins the demonstration. "I will now check the oil
level," Steve says, and he moves over to the dipstick. Steve looks down at the dipstick,
points at it, looks back at the student, and says "First, pull out the dipstick." Steve pulls
it out (see Figure 1). Pointing at the level indicator, Steve says "Now we can check the oil
level on the dipstick. As you can see, the oil level is normal." To finish the subtask, Steve
says "Next, insert the dipstick" and he pushes it back in.

Continuing the demonstration, Steve says "Make sure all the cut-out valves are open."
Looking at the cut-out valves, Steve sees that all of them are already open except one.
Pointing to it, he says "Open cut-out valve three," and he opens it.

Figure 1: Steve pulling out a dipstick

Figure 2: Steve describing a power light

Next, Steve says "I will now perform a functional test of the drain alarm light. First,
check that the drain monitor is on. As you can see, the power light is illuminated, so
the monitor is on" (see Figure 2). The student, realizing that she has seen this procedure
before, says "Let me finish." Steve acknowledges that she can finish the task, and he shifts
to monitoring her performance.

The student steps forward to the relevant part of the compressor, but is unsure of what
to do first. "What should I do next?" she asks. Steve replies "I suggest that you press
the function test button." The student asks "Why?" Steve replies "That action is relevant
because we want the drain monitor in test mode." The student, wondering why the drain
monitor should be in test mode, asks "Why?" again. Steve replies "That goal is relevant
because it will allow us to check the alarm light." Finally, the student understands, but she
is unsure which button is the function test button. "Show me how to do it" she requests.
Steve moves to the function test button and pushes it (see Figure 3). The alarm light comes
on, indicating to Steve and the student that it is functioning properly. Now the student
recalls that she must extinguish the alarm light, but she pushes the wrong button, causing

Figure 3: Steve pressing a button

a different alarm light to illuminate. Flustered, she asks Steve "What should I do next?"
Steve responds "I suggest that you press the reset button on the temperature monitor."
She presses the reset button to extinguish the second alarm light, then presses the correct
button to extinguish the first alarm light. Steve looks at her and says "That completes the
task. Any questions?"

The student only has one question. She asks Steve why he opened the cut-out valve.1

"That action was relevant because I wanted to dampen oscillation of the stage three gauge"
he replies.

This example illustrates a number of Steve's capabilities. He can generate and recog-
nize speech, demonstrate actions, use gaze and gestures, answer questions, adapt domain
procedures to unexpected events, and remember past actions. The remainder of the paper
describes the technical details behind these capabilities.

'Such after-action review questions are posed via a desktop menu, not speech. Steve generates menu items
for all the actions he performed, and the student simply selects one. A speech interface for after-action review
would require more sophisticated speech understanding.

Human Interface

Figure 4: An architecture for virtual worlds. Although the figure only shows components
for one agent and one human, other agents and humans can be added by simply connecting
them to the message dispatcher in the same way.

3 Creating Virtual Worlds for People and Agents

Before we can discuss Steve's architecture, we must introduce a software architecture for
creating virtual worlds that people and agents can cohabit. With our colleagues from
Lockheed Martin Corporation and the USC Behavioral Technologies Laboratory, we have
designed and implemented such an architecture (Johnson et al. 1998). For purposes of mod-
ularity and efficiency, the architecture consists of separate components running in parallel
as separate processes, possibly on different machines. The components communicate by
exchanging messages. Our current architecture includes the following types of components:

Simulator The behavior of the virtual world is controlled by a simulator. Our current im-
plementation uses the VIVIDS simulation engine (Munro & Surmon 1997), developed
at the USC Behavioral Technologies Laboratory.2

Visual Interface Each human participant has a visual interface component that allows
them to view and manipulate the virtual world. The person is connected to this
component via several hardware devices: their view into the world is provided by a
head-mounted display, their movements are tracked by position sensors on their head
and hands, and they interact with the world by "touching" virtual objects using a
data glove. (They can also pinch objects using a pinch glove or click on objects using
a 3D mouse; these actions are all treated the same by the visual interface component,
which supports all these alternative devices.) The visual interface component plays
two primary roles:

• It receives messages from the other components (primarily the simulator) describ-
ing changes in the appearance of the world, and it outputs a three-dimensional
graphical representation through the person's head-mounted display.

2 VIVIDS is a descendant of the RIDES and VRIDES systems mentioned in our earlier papers.

• It informs the other components when the person interacts with objects.

Our current implementation uses Lockheed Martin's Vista Viewer (Stiles, McCarthy,
& Pontecorvo 1995) as the visual interface component.

Audio Each human participant has an audio component. This component receives mes-
sages from the simulator describing the location and audible radius of various sounds,
and it broadcasts appropriate sounds to the headphones on the person's head-mounted
display.

Speech Generation Each human participant has a speech generation component that re-
ceives text messages from other components (primarily agents), converts the text to
speech, and broadcasts the speech to the person's headphones. Our current imple-
mentation uses Entropic's TrueTalk7^ text-to-speech product.

Speech Recognition Each human participant has a speech recognition component that
receives speech signals via the person's microphone, recognizes the speech as a path
through its grammar, and outputs a semantic token representing the speech to the
other components. (Steve agents do not have any natural language understanding
capabilities, so they have no need for the recognized sentence.) Our current imple-
mentation uses Entropic's GrapHVite™ product.

Agent Each Steve agent runs as a separate component. The remainder of this paper
focuses on the architecture of these agents and how they communicate with the other
components.

The various components do not communicate directly. Instead, all messages are sent to
a central message dispatcher. Each component tells the dispatcher the types of messages
in which it is interested. Then, when a message arrives, the dispatcher forwards it to all
interested components. For example, each visual interface component registers interest in
messages that specify changes in the appearance of the virtual world (e.g., a change in the
color or location of an object). When the simulator sends such a message, the dispatcher
broadcasts it to every visual interface component. This approach increases modularity,
since one component need not know the interface to other components. It also increases
extensibility, since new components can be added without affecting existing ones. Our
current implementation uses Sun's ToolTalk™ as the message dispatcher.

4 Overview of Steve's Architecture

4.1 Perception, Cognition, and Motor Control

Steve consists of three main modules: perception, cognition, and motor control. The per-
ception module monitors messages from the message dispatcher and identifies events that
are relevant to Steve, such as actions taken in the virtual world by people and agents and
changes in the state of the virtual world. The cognition module interprets the input it re-
ceives from the perception module, chooses appropriate goals, constructs and executes plans
to achieve those goals, and sends out motor commands to control the agent's body. The
motor control module decomposes these motor commands into a sequence of lower-level
commands that are sent to other components via the message dispatcher. For example,
upon receiving a motor command to push a button in the virtual world, the motor control

Steve

Cognition

\~——y / > v Perception snapshot, ^v important events

Motor Control
Spatial information

Perception

j De tailed motor comma nds^^ * Relevant events

Figure 5: The three main modules in Steve and the types of information they send and
receive.

module would send animation primitives to cause Steve's graphical finger to move to the
button and would then send a message to the simulator to simulate the effects of the button
being pressed.

In our current implementation, cognition runs as one process, and perception and motor
control run in a separate process. This split has two advantages. First, it allows each
module to be implemented in a suitable language. The cognition module is built on top
of Soar (Laird, Newell, & Rosenbloom 1987; Newell 1990), which is intended as a general
architecture for cognition; most of Steve's cognitive capabilities are implemented in Soar
production rules. In contrast, the perception and motor control modules are implemented
in procedural languages, namely Tcl/Tk and C. The second advantage of the split is that
cognition can run in parallel with perception and motor control. This is especially important
when there is a high volume of message traffic arriving at the perception module, as would
be the case for a highly dynamic world; we do not want the perceptual processing to slow
down cognition. If the motor control module were computationally expensive, it might pay
to run perception and motor control as separate, parallel processes as well, but this has not
been the case so far.

The perception, cognition, and motor control modules communicate directly, not via the
message dispatcher. The cognition module communicates with the other two by message
passing. It sends a message to the perception module when it is ready for an update on the
state of the virtual world; the perception module responds with a snapshot of the state of
the world and a set of important events that occurred since the last snapshot it sent (e.g.,
actions taken by people and agents). The cognition module also sends motor command
messages to the motor control module. The motor control module resides in the same
process as the perception module, so it accesses perceptual information freely via procedure
calls and shared variables.

4.2 Domain Knowledge

To allow Steve to operate in a variety of domains, his architecture has a clean separation
between domain-independent capabilities and domain-specific knowledge. The code in the
perception, cognition, and motor control modules provides a set of general capabilities that
are independent of any particular domain. To allow Steve to operate in a new domain, a
course author simply specifies the appropriate domain knowledge in a declarative language.
This declarative language was designed to be used by people with domain expertise but not
necessarily any programming skills. Steve's general capabilities draw on the knowledge to
teach it to students. The domain knowledge that Steve requires falls in two categories:

Perceptual Knowledge This knowledge tells Steve about the objects in the virtual world,
their relevant simulator attributes, and their spatial properties. It resides in the
perception module, and will be discussed in Section 5.

Task Knowledge This knowledge tells Steve about the procedures for accomplishing do-
main tasks and provides text fragments so that he can talk about them. It resides in
the cognition module, and will be discussed in Section 6.

5 Perception

The role of the perception module is to receive messages from other components via the
message dispatcher, use these messages to maintain a coherent representation of the state

of the virtual world, and to provide this information to the cognition and motor control
modules. This section describes the representation that the perception module maintains
and how it obtains the information, thus illustrating the types of information available to
an agent in virtual reality.

5.1 Representing the State of the Virtual World

5.1.1 Representing the Simulator State

Most information about the state of the virtual world is maintained by the simulator. The
perception module represents the simulator state as a set of attribute-value pairs. Each
attribute represents a state variable in the simulator, and the attribute's value represents
the value of the variable. For example, the state of an indicator light, say lightl, might
be represented with the attribute lightl_state with possible values on and off. This
simple representation was chosen to allow Steve to operate with a variety of simulators;
while some simulators allow more sophisticated object-oriented representations, nearly all
of them support this simple attribute-value representation.

The perception module tracks the simulator state by listening for messages from the
simulator (via the message dispatcher). The perceptual knowledge provided to Steve by
the course author includes a list of all relevant attributes. When Steve starts up, the
perception module asks the simulator for the current value of each one. It also informs the
message dispatcher that it is interested in messages describing changes in these attributes.
The simulator broadcasts messages whenever the simulation state changes. Each message
specifies the name of an attribute that changed and its new value.

The perception module uses these messages to maintain a snapshot of the simulation
state. The cognition module periodically asks for this snapshot, so the perception module
must always have one ready to be sent. After the perception module initializes its snapshot,
it can simply update it whenever it receives a message from the simulator, except for one
complication: some groups of messages from the simulator represent simultaneous changes.
For example, suppose that a light should be illuminated whenever a button is depressed.
When the button is pressed, the simulator will send two messages: one specifying that the
button is depressed, and another specifying that the light is on. If the perception module
were to update the simulation snapshot after each message, the cognition module might
ask for a snapshot before both messages have been received and processed, and hence it
could receive an inconsistent state of the world. This situation is analogous to a database
transaction (Korth & Silberschatz 1986); either the cognition module should see the effects
of all the simultaneous changes, or it should not see the effects of any of them.

To avoid this possibility, the simulator must use start and end messages to delimit
messages representing simultaneous changes. After receiving a start message, the perception
module stores subsequent simulator messages on a queue. When the end message arrives, the
perception module updates the simulation snapshot by processing all the queued messages.
This update is atomic; the cognition module cannot ask for a snapshot during the update.
Thus, if the cognition module asks for a snapshot before the end message arrives, it sees
none of the changes; if it asks for a snapshot after the end message arrives, it sees all of
them.

10

5.1.2 Representing Spatial Properties of Objects and Agents

In order to control Steve's body in the virtual world, Steve needs to know the spatial prop-
erties of objects, such as their position, orientation, and spatial extent. In principle, the
simulator could maintain such properties and provide them to the perception module as
described in the previous section. In practice, however, this is often inconvenient. The
simulator controls the appearance of the virtual world by instructing the visual interface
components to load graphical models for objects and by sending messages to change prop-
erties of the objects, such as location and color. Therefore, the simulator itself may have no
representation for the geometric properties of the objects; these details are in the graphical
models themselves, which are typically created by a course author using a 3D modeling tool
and stored in files. Moreover, the simulator may not even have simple information such as
the location of the objects. This is because graphics objects are typically organized into a
hierarchy, where each object has its own coordinate system that is relative to its parent.
For example, the simulator might know how to move a button in and out relative to its
graphical parent, a console, but may not know the global (world) coordinates of the button,
which is what Steve needs.

Fortunately, the visual interface components can provide such information. Currently,
the perception module queries a visual interface component for such information when it is
needed. When the motor control module needs to interact with an object (e.g., point to it),
it asks the perception module for its location and bounding sphere. The location specifies
the origin of the object in Cartesian coordinates, as an (x, y, z) point. The bounding sphere
is specified by the smallest radius around that origin that encompasses the object.

The perception module can get these properties of other agents as well. Each agent has
a graphical body in the virtual world. To the visual interface components, these bodies are
no different than any other graphical object, so the perception module can query for the
location and bounding spheres of any agent.

In addition to keeping track of the location of agents in Cartesian coordinates, the
perception module also keeps track of Steve's location in terms of objects. To move to
an object, the cognition component sends a motor command to that effect. The motor
control module converts this request into a location in Cartesian coordinates and sends
a message to move Steve there. When Steve arrives, the perception module receives a
message from the visual interface component, and it records his location as being at the
desired object. The cognition module works at this level of abstraction, ignoring the actual
Cartesian coordinates.

To interact with objects, Steve needs other spatial information that is not provided by
the visual interface components. Therefore, we require the course author to provide the
following perceptual knowledge for each object:

front vector To interact with an object, Steve must know where its front side is. When
interacting with an object, Steve will use this knowledge to position himself in front
of the object. The course author specifies the front of an object by a vector in the
x-y plane that points to the front of the object from its origin. (We currently assume
that this vector does not change dynamically.)

grasp vector If Steve may need to grasp the object, he needs to know the appropriate
orientation for his hand. The course author specifies this as a vector in three-space
pointing from the object's origin in the direction in which Steve would pull the object.

11

(Even if Steve has no reason to pull the object, this provides an orientation with which
to grasp it.)

press vector If Steve may need to press the object (e.g., a button), he also needs an
appropriate orientation for his hand when doing so. The course author specifies this
as a vector in three-space pointing from the object's origin in the direction in which
Steve should press the object.

agent location When interacting with an object, Steve stands in front of it and slightly to
the right (to avoid blocking the student's view). Using the object's location, bounding
sphere, and front vector, Steve can choose his location. Typically, this approach works
well, because it ensures that Steve is out of the student's way when the student is
standing in front of the object. However, if the object has an irregular shape, the
bounding sphere might lead Steve to stand unnecessarily far from it. Or, if there are
other objects surrounding the desired object, Steve might need to adjust his position
to avoid colliding with them. If Steve's default location is not appropriate, the course
author can specify a more appropriate location, by specifying how far in front, above,
and to the right of the object Steve should stand. (Negative numbers can be used to
force Steve to stand behind, below, or to its left when necessary.)

5.1.3 Representing Properties of Human Participants

The perception module also keeps track of human participants. The visual interface com-
ponent for a person uses the position sensor on their head-mounted display to track their
location in Cartesian coordinates (specifically, the point between their eyes) and their line
of sight, and the perception module can request this information when it is needed by the
motor control module (e.g., to look at a person).

If Steve is working with a student on a task, the perception module also keeps track of
the student's field of view. More specifically, it keeps track of which objects in the virtual
world lie within the student's field of view. For each object, the perception module asks the
student's visual interface component whether that object is in the student's field of view.
Subsequently, the visual interface component broadcasts a message when an object enters
or leaves the student's field of view, so the perception module can maintain a snapshot of
which objects the student can see.

5.1.4 Representing Perceptual Knowledge for Path Planning

Steve must navigate through the virtual world from object to object, avoiding collisions.
There are several approaches to collision-free navigation, most of them originally developed
by robotics researchers and later adapted for graphical worlds. Steve follows one standard
approach; he carves the virtual world into a graph, where the nodes of the graph are places,
and there is an edge between two nodes if Steve can move directly between the places without
colliding into anything. As his set of places, Steve uses the objects in the virtual world, or,
more specifically, the places he stands when interacting with each object. Currently, our
work focuses on relatively static environments, so we assume the graph does not change
over time. By default, there is an edge between any two nodes (places). However, if there
is something blocking the path between two objects (e.g., a wall), the course author can
specify that there is no direct path between the objects, effectively removing that edge from
the graph. (For sparse graphs or subgraphs, the author can alternatively just specify the

12

permissible edges.) The resulting adjacency graph serves as Steve's perceptual knowledge
for navigation; using it, the motor control module can plan a path between any two nodes,
as described in Section 7.2.

5.2 Representing and Handling Events

Whenever the perception module passes a snapshot of the state of the world to the cognition
module, it also passes a list of important events that occurred since the last snapshot. If the
cognition module could only see periodic snapshots of the state of the world, it might miss
some events. For example, if a button were pressed and released in between snapshots, the
cognition module would never know it had been pressed. By receiving both a snapshot of
the world and a list of important events that occurred since the last snapshot, the cognition
module gets a complete view of the world and its changes.

The perception module receives and forwards to the cognition module several types of
events:

state changes As described earlier, the simulator sends messages whenever the state of
the virtual world changes. The cognition module does not need most of these; they
are summarized by the snapshot it receives. However, the perception module passes a
select few to the cognition module, specifically those that provide feedback on Steve's
object manipulations. These "important state changes" are specified in Steve's per-
ceptual knowledge.

actions on objects When a human participant interacts with an object (e.g., touches it
with a data glove), that participant's visual interface component broadcasts a message
specifying the name of the participant and the object they touched. The meaning
of this interaction depends on the object. For example, touching a button causes
the button to be pressed, while touching a valve allows the human participant to
turn it. The result of the action is determined by the simulator; the message from
the visual interface component only specifies the participant and object. The visual
interface component also sends a message when the person stops touching the object.
Agents interact with objects by sending these same messages, listing themselves as
the participant.

human's speech Steve receives messages from a speech recognition component when a
human participant begins talking and when they finish. The former message simply
specifies which person is speaking, while the latter additionally includes a semantic
token that represents the sentence that was recognized. (If the speech recognizer did
not understand the sentence, it returns an unknown token.)

agent's speech Steve agents can also tell when other agents are talking. An agent sends
out a message to the speech generation components to generate speech. Therefore, an
agent can listen for such messages to detect when other agents begin speaking. When a
speech generation component finishes producing the speech for its human participant,
it sends a message to this effect. Therefore an agent can also tell when other agents
have finished speaking. Moreover, an agent can use such messages to detect when its
own utterance is complete. Currently, these messages do not include a semantic token,
like their corresponding messages representing human speech. Instead, agents send
separate messages representing the semantic content of their speech; these messages
are loosely based on speech acts, much like KQML (Labrou & Finin 1994).

13

6 Cognition

6.1 The Layers of Steve's Cognition

The cognition module is organized into three main layers:

• Domain-specific task knowledge

• Domain-independent pedagogical capabilities

• Soar

Steve is built on top of the Soar architecture (Laird, Newell, & Rosenbloom 1987; Newell
1990). Soar was designed as a general model of human cognition, so it provides a number
of features that support the construction of intelligent agents. This paper will not focus on
Soar, since an understanding of Steve does not require an understanding of Soar. However,
much of Steve's design was influenced by features of the Soar architecture.

Soar is a general cognitive architecture, but it does not provide built-in support for
particular cognitive skills such as demonstration, explanation, and question answering. Our
main task in building Steve was to design a set of domain-independent pedagogical capa-
bilities such as these and layer them on top of the Soar architecture. These capabilities are
implemented as Soar production rules, and they will be discussed later in this section.

To teach students how to perform procedural tasks in a particular domain, Steve needs a
representation of the tasks. A course author must provide such knowledge to Steve. Given
appropriate task knowledge for a particular domain, Steve uses his general pedagogical
capabilities to teach that knowledge to students. Thus, our layered approach to Steve's
cognition module allows Steve to be used in a variety of domains; each new domain requires
only new task knowledge, without any modification of Steve's abilities as a teacher.

6.2 Domain Task Knowledge

Intelligent tutoring systems typically represent procedural knowledge in one of two ways.
Some, notably those of Anderson and his colleagues (Anderson et al. 1995), use detailed
cognitive models built from production rules. Such systems perform domain tasks by di-
rectly executing the rules. Other systems use a declarative representation of the knowledge,
usually some variant of a procedural network representation (Sacerdoti 1977) specifying the
steps in the procedure and their ordering. Such systems perform tasks by using a domain-
independent interpreter to "execute" the procedural network (i.e., walk through the steps).
Production rule models provide a more flexible ontology at a price: they are laborious to
build. The labor may be justified in domains like algebra and geometry, where a tutor, once
built, can be used for many years by many people. In contrast, procedural network rep-
resentations are more practical for domains like operation and maintenance of equipment;
procedures may change frequently in such domains, so it must be easy for domain experts
or course authors to represent procedures, examine them, and change them when necessary.
For these reasons, Steve uses a procedural network (plan) representation of domain tasks.

Steve represents domain tasks as hierarchical plans, using a relatively standard rep-
resentation (Russell k, Norvig 1995). First, each task consists of a set of steps, each of
which is either a primitive action (e.g., press a button) or a composite action (i.e., itself a
task). Composite actions give tasks a hierarchical structure. Second, there may be ordering
constraints among the steps, each specifying that one step must precede another. These

14

Task: functional-test

Steps: press-function-test, check-alarm-light, extinguish-alarm

Causal Links:
press-function-test achieves test-mode for check-alarm-light
check-alarm-light achieves know-whether-alarm-functional for end-task
extinguish-alarm achieves alarm-off for end-task

Ordering constraints:
press-function-test before check-alarm-light
check-alarm-light before extinguish-alarm

 Figure 6: An example task definition

constraints define a partial order over the steps. Finally, the role of the steps in the task
is represented by a set of causal links (McAllester & Rosenblitt 1991). Each causal link
specifies that one step achieves a goal that is a precondition for another step (or for termi-
nation of the task). For example, pulling out a dipstick achieves the goal of exposing the
level indicator, which is a precondition for checking the oil level.

Figure 6 shows an example of a task definition: the task of performing a functional test
of one of the subsystems of a high-pressure air compressor aboard a ship. It consists of three
steps: press-function-test, in which the compressor operator presses the test button on the
control panel, check-alarm-light, in which the operator examines the light to make sure it
is functional (i.e., not burned out), and extinguish-alarm, in which the operator presses the
reset button to reset the light. In addition, every task has two dummy steps: a begin-task
that precedes all other steps, and an end-task that follows all other steps. Several causal
links exist among the steps. For example, press-function-test puts the device in test-mode
(i.e., illuminates the alarm light), which is a precondition for check-alarm-light. In order for
the task to be complete, the operator must know whether the alarm light is functional, and
the alarm light must be off; thus, these end goals are shown as preconditions for end-task.
Similarly, if the task depended on conditions that must be established prior to starting the
task, these conditions would be represented as effects of begin-task.

The plan representation only defines the structure of a task, in terms of its goals and
steps. To complete the description, the course author must define the goals and primitive
actions it references. Each goal is defined by an attribute-value pair. Steve can represent two
types of goals: attributes of the virtual world, and attributes of his own mental state. For
the former, the attribute is one that will appear in Steve's perception (e.g., lighti_state),
and the value is its desired value (e.g., on). The goal is satisfied when that attribute-
value pair is part of Steve's current perceptual snapshot. For the latter, the attribute is
one that will appear in Steve's mental state. Such attributes are stored as the result of
certain primitive actions that Steve executes, namely sensing actions (Russell & Norvig
1995). Sensing actions are used to record the state of some attribute of the virtual world
at a particular point during a task. For instance, in the functional-test example above,
check-alarm-light is a sensing action that causes Steve to record the resulting state of the
light as the value of a check_alarm_light_result attribute in mental state. (A mental

15

State goal can optionally specify an attribute without any specific value; for example, a goal
specified only as check_alarm_light_result is satisfied if Steve knows the result of the
test, regardless of the particular result.) Thus, Steve can represent two types of goals: goals
that require putting the virtual world in some desired state, which Steve can evaluate using
perception, and goals of acquiring information, which Steve can evaluate by checking his
mental state.

Primitive actions require Steve to interact with the virtual world, typically via motor
commands. To simplify the course author's job of describing the primitive actions in a task,
we are developing a library of primitive actions that are appropriate for a virtual world; the
course author defines each primitive action in a task as an instance of one in the library.
The library is organized as a hierarchy of very general actions and their specializations. For
example, one general action in the library is ManipulateObject. To define a task step as
an instance of ManipulateObject,.the course author must specify the name of the object
in the virtual world to be manipulated (e.g., buttonl), the name of the motor command
that will perform the manipulation (e.g., press), and the perceptual attribute-value pair
that will indicate that the manipulation has finished (e.g., buttonl_state depressed).
Other actions in the library are defined as specializations of such general actions, to pro-
vide a shorthand for course authors. For example, the library includes PressButton as a
specialization of ManipulateObject; a course author could define the previous example as
an instance of PressButton by merely specifying the name of the button. It is relatively
easy to extend the action library, but it does require writing some simple Soar productions,
so we would not expect course authors to extend it themselves.

To complete the task knowledge, the course author must provide text fragments that
Steve can use for natural language generation. Steve does not currently include any sophis-
ticated capabilities for natural language generation; speech utterances are constructed by
plugging domain-specific text fragments into text templates. Steve currently requires three
types of text fragments:

• He requires one fragment for each goal, in a form that would complete the sentence
"I want...".

• He requires two fragments for each task step. The first is a a simple imperative
description of the step (e.g., "press the power button"). The second has the same
form and purpose, but may include more elaboration. Steve uses the second fragment
when a verbose description of the step is appropriate.

• For sensing actions, he requires a fragment for each possible result (e.g., "the oil level
is low" and "the oil level is normal"). Steve uses these fragments when describing the
results of sensing actions to a student.

Our representation for domain task knowledge provides the information that Steve needs
while only requiring declarative knowledge that a course author can provide. In contrast to
simple partial-order plans, our hierarchical plan representation provides several benefits: it
allows the course author to chunk complex procedures into subtasks, which may be reused
in multiple tasks, and it provides more structure to Steve's demonstrations, allowing him
to chunk complex procedures into subtasks to aid students' comprehension. Our inclusion
of causal links in the task representation differs from previous tutoring systems; previous
systems that used a declarative representation of procedural knowledge, such as those of
Burton (1982), Munro et al. (1993), and Rickel (1988)), only included steps and ordering

constraints. As we will discuss shortly, Steve's knowledge of causal links allows him to
automatically generate explanations and to adapt procedures to unexpected circumstances,
making him more robust than these previous systems.

The central purpose of Steve's task knowledge is to allow him to create a task model when
he is required to demonstrate a task or monitor the student performing the task. He creates
the task model by simple top-down task decomposition (Sacerdoti 1977). First, he initializes
the task model to contain the name of the task. Next, he adds the task representation (steps,
ordering constraints, and causal links) for that task. Steve recursively repeats this process
for any composite step in the task representation, until the task has been fully decomposed
into primitive actions. The result is the full hierarchical representation of the given task.
This task model includes all the steps that might be required to complete the task, even if
some are not necessary given the current state of the world. As described shortly, this task
model is an important resource for Steve's plan construction.

6.3 Steve's Decision Cycle

The cognition module operates by continually looping through a decision cycle. In our
current implementation, Steve executes about ten decision cycles per second. Once Steve is
given a task and has created the task model, as described in the last section, each decision
cycle goes through five phases:3

1. Input phase: Get the latest perceptual information from the perception module.

2. Goal assessment: Use the perceptual information to determine which goals of the
current task are satisfied. This includes the end goals of the task as well as any
intermediate goals (i.e., preconditions of task steps).

3. Plan Construction: Based on the results of goal assessment, construct a plan to
complete the task.

4. Operator Selection: Select the next operator. Each operator is represented by a set
of production rules that implement one of Steve's capabilities, such as answering a
question or demonstrating an action. Steve's operators serve as the building blocks
for his behavior.

5. Operator Execution: Execute the selected operator. In most cases, this will cause the
cognition module to output one or more motor commands.

The general notions of decision cycle, input phase, and operator selection and execution are
provided by Soar. The particulars of Steve's decision cycle are unique to Steve.

During the input phase, the cognition module asks the perception module for the state
of the virtual world. As discussed in Section 5, the cognition module receives three pieces
of information:

• the state of the simulator, represented as a set of attribute-value pairs (as described
in Section 5.1.1)

• a set of important events that occurred since the last snapshot (as described in Sec-
tion 5.2)

3 Actually, Soar executes phase 5 concurrently with phases 1-3 of the next decision cycle.

17

• the student's field of view, represented as the set of objects that lie within it (as
described in Section 5.1.3)

The remainder of this section discusses the rest of the decision cycle. First, we discuss
goal assessment (Section 6.4) and plan construction (Section 6.5). Then, we discuss Steve's
operators (i.e., his individual capabilities). The discussion of operators is organized around
three primary modes: demonstrating a task to a student (Section 6.6), monitoring a stu-
dent's performance and providing help (Section 6.7), and answering questions about past
actions (Section 6.8).

6.4 Goal Assessment

In order to construct a plan to complete the current task, Steve must know which of the
task goals are already satisfied. As described in Section 6.2, each goal in the task model
is associated with an attribute-value pair. Therefore, Steve can assess each goal by sim-
ply determining whether its associated attribute-value pair is satisfied given his current
perceptual input and mental state.

Our implementation of this process exploits Soar's truth maintenance system. When
the course author defines a goal, an associated Soar production rule is created. This rule
simply checks the current perceptual input or mental state, whichever is appropriate. When
the goal becomes satisfied, the rule fires, marking the goal satisfied. As long as the goal
is satisfied, this result will remain, without any further processing required. If the goal
becomes unsatisfied, Soar retracts the rule, along with its result. Thus, Steve need not
evaluate every goal on every decision cycle; each rule automatically fires or retracts when
the status of its goal changes.

6.5 Plan Construction

Whether demonstrating a task to a student or monitoring the student's performance of the
task, Steve must maintain a plan for completing the task. The plan allows Steve to identify
the next appropriate action and, if asked, to explain the role of that action in completing
the task. As a teacher, Steve's ability to rationalize the action is just as important as his
ability to choose it.

We faced conflicting design criteria when designing Steve's planner. To handle dynamic
environments containing people and other agents, Steve must be able to adapt procedures
to unexpected events. This argues against a rote execution of domain procedures, in favor
of a general planning and replanning capability. Thus, we might encode domain actions
as STRIPS operators (Russell & Norvig 1995) and use a standard partial-order planner
(Weld 1994) to construct plans. However, we also want Steve to follow standard proce-
dures whenever possible. Thus, we would have to augment the partial-order planner with
substantial control knowledge to discourage unusual plans. Moreover, Steve must be able
to construct and revise plans quickly, since he and the student are collaborating on tasks
in real time. This can be a problem for general partial-order planners, which often require
exponential search. Finally, we must only require task knowledge that course authors can
easily provide, yet formulating STRIPS operators and control knowledge for a partial-order
planner is difficult even for AI researchers.

To satisfy these criteria, Steve uses the task model, as described in Section 6.2, to
guide his plan construction and revision. Recall that, when given a task to demonstrate
or monitor, Steve uses top-down task decomposition to construct a task model. The task

18

model includes all the steps that might be required to complete the task, even if some are
not necessary given the current state of the world. Every decision cycle, after Steve gets a
new perceptual snapshot and assesses the goals in the task model, he constructs a plan for
completing the task. He does so by marking those elements of the task model that are still
relevant to completing the task, as follows:

• Every end goal of the task is relevant.

• A primitive step in the task model is relevant if it achieves a relevant, unsatisfied goal.

• Every precondition of a relevant step is a relevant goal.

Thus, Steve starts by marking all the end goals as relevant (i.e., in the plan). For each
one that is not already satisfied, he finds the step in the task model that achieves it and adds
that step to the plan. Each step that is added may have unsatisfied preconditions, and each
such precondition becomes a new goal that must likewise be achieved. This is exactly how
a general partial-order planner operates. However, Steve's use of the task model eliminates
much of the complexity that a partial-order planner must handle:

• A partial-order planner may have multiple actions that could achieve each goal, so it
must search through alternative plans. In contrast, Steve uses the task model as an
oracle for choosing the appropriate action to achieve each relevant, unsatisfied goal,
so there is no search. Thus, Steve's plan construction is predictably fast.

• A partial-order planner must identify threats (i.e., two unordered steps that could
interact undesirably if executed in the wrong order) and add appropriate ordering
constraints. In contrast, Steve simply uses the ordering constraints in the task model;
if two steps in the plan have an ordering constraint in the task model, that ordering
constraint is added to the plan. As long as there are no unresolved threats in the task
model, there will be no unresolved threats in the plan.

• A partial-order planner must create steps in the plan by instantiating STRIPS op-
erators. Therefore, it must maintain a set of binding constraints, and it may have
to search when there are alternatives. In contrast, the steps in the task model are
instances of actions in the action library, so they have no variables. Hence, Steve need
not reason about binding constraints.

This approach satisfies our design criteria. It is efficient, and it forces Steve to follow
standard procedures as much as possible, yet it still allows him to adapt to unexpected
events: Steve re-executes parts of his plan that get unexpectedly undone, and he skips over
parts of the task that are unnecessary because their goals were serendipitously achieved.
Thus, unlike videos or scripted demonstrations, Steve can adapt domain procedures to the
state of the virtual world, and he does so efficiently.

To execute the plan (or evaluate the student's actions), Steve must also determine
which steps to do next. A plan step is ready for execution if it is "applicable" (i.e., all its
preconditions are satisfied) and not "precluded" (i.e., no other plan step necessarily comes
before it). Note that there may be a single next step, there may be multiple next steps
(since this is a partially-ordered plan), and there may be no next steps (if no subset of the
task model will get Steve from the current state to task completion).

Steve's plan construction exploits Soar's truth maintenance system, making it even more
efficient. Each of the three rules for determining relevance listed above is implemented as

19

a production rule. Depending on which goals in the task model are satisfied, instances of
these production rules fire, marking appropriate parts of the task model as relevant (i.e., in
the current plan). As goals become satisfied or unsatisfied, only affected instances of the
production rules fire or retract, so only those parts of the plan that are affected by changes
in the current state are revised.

6.6 Demonstration

To demonstrate a task to a student, Steve must perform the task himself, explaining what
he is doing along the way. First, he creates the task model. Then, in each decision cycle,
he updates his plan for completing the task and determines the next appropriate steps, as
discussed in the previous section. After determining the next appropriate steps, he must
choose one and demonstrate it. First, we discuss how he chooses, and then we discuss how
he demonstrates.

6.6.1 Choosing the Next Task Step to Demonstrate

At any point during a task, there may be multiple steps that could be executed next. That
is, each of these steps may be applicable (i.e., all their preconditions are satisfied) and not
precluded (i.e., no other step in the plan must necessarily come first). From the standpoint
of completing the task, any of these steps could be chosen. However, from the standpoint
of communicating with the student, they may not be equally appropriate.

Students will more easily follow the demonstration if Steve follows certain human con-
ventions. For example, it is easier to follow a demonstration that focuses on one subtask
at a time. If two subtasks could be interleaved arbitrarily, Steve could alternately execute
one step from each subtask until they are both complete, but this would be unnecessarily
confusing. As another example, suppose that Steve were demonstrating a subtask (e.g.,
configuring a console) when an unrelated, higher-priority task step suddenly became rele-
vant (e.g., acknowledging an alarm). After acknowledging the alarm, Steve could move on
to an unrelated subtask, but the student will expect him to resume the interrupted subtask
(e.g., configuring the console). Researchers in computational linguistics have studied this
problem of discourse focus for many years, and they have identified common conventions
in types of discourse as different as rhetorical persuasion and dialogues regarding tasks. To
ensure coherent demonstrations, Steve must obey these conventions.

Following Grosz and Sidner (1986), we represent the discourse focus as a stack. When
Steve begins executing a step in the plan (either primitive or composite), he pushes it onto
the stack. Therefore, the bottom element of the stack is the main task on which the student
and Steve are collaborating, and the topmost element is the one on which the demonstration
is currently focused. When the step at the top of the focus stack is "complete," Steve pops
it off the stack. A primitive action is complete when it is no longer in the current plan,
while a composite step is complete when all its end goals are satisfied.

Steve uses the focus stack to help choose the next step to demonstrate. When there are
multiple plan steps ready for execution, he prefers those that maintain the current focus or
shift to a subtask of the current focus. To operationalize this intuition, Steve first fleshes
out the list of candidates for demonstration:

• Any step in the current plan that is ready for execution is a candidate. Each of these
is a primitive action, since the plan never includes any composite steps.

20

• If a step (primitive or composite) is a candidate, and its parent (composite step) in
the task model is not somewhere on the focus stack, that parent step is a candidate.

• The previous rule is applied recursively. That is, if a composite step is added as a
candidate, and its parent in the task model is not somewhere on the focus stack, that
parent is added as a candidate.

Having enumerated the candidates, Steve chooses among them as follows:

• Executing a parent step next is preferable to executing any of its children. Intuitively,
this means that Steve should shift focus to the (sub)task and introduce it before he
begins demonstrating its steps.

• A task step whose parent is the current focus (i.e., the topmost element of the focus
stack) is preferable to one whose parent is not.

• If there are remaining candidates that are unordered by these preferences, Steve
chooses one randomly.

Let's illustrate these rules with a few examples:

• Suppose Steve is beginning a new demonstration. Therefore, the focus stack is empty.
Suppose the task is "start the compressor," the first subtask is "check the oil," and
the first step of that subtask is "pull out the dipstick." Therefore, the first step of the
plan will be "pull out the dipstick." Since that step's parent ("check the oil") is not
on the focus stack, it is a candidate for demonstration, and is preferable to "pull out
the dipstick." Since the parent of "check the oil," namely "start the compressor," is
not on the focus stack, it is a candidate for demonstration, and is preferable to "check
the oil." Thus, "start the compressor" is added to the focus stack first, and Steve
executes it by introducing the task to the student. Next, Steve will push "check the
oil" onto the stack and execute it by introducing this first subtask. Finally, Steve can
push "pull out the dipstick" onto the stack and demonstrate it to the student; at this
point, Steve has introduced the appropriate hierarchical context for performing this
action.

• Suppose Steve could perform two subtasks in any order, such as "check the oil" and
"check the coolant," and he randomly chooses to check the oil first. Next, since "check
the oil" is the current focus, he will prefer "pull out the dipstick" to "check the coolant
level" or any of its steps, so he will push it onto the focus stack and demonstrate it.
When the dipstick is out, it will be removed from the plan and popped off the focus
stack, making "check the oil" the current focus again. This process will repeat for
each step of "check the oil," until that subtask is completed and popped off the focus
stack.

• Suppose that Steve is performing one subtask (e.g., "configure console") when an
unrelated, higher-priority (based on ordering constraints) task step suddenly becomes
relevant (e.g., "acknowledge alarm"). Steve will add "acknowledge alarm" to the plan,
and it will be the only step ready for execution (since it precludes the remaining steps
of "configure console," so Steve will push it onto the focus stack and demonstrate it.
When the alarm is acknowledged, it will be removed from the plan and popped off
the focus stack, and Steve will resume "configure console."

..21.

6.6.2 Demonstrating a Task Step

Once Steve chooses the next task step and pushes it onto the focus stack, he demonstrates it
to the student. If the step is a composite step, Steve simply introduces the (sub)task, using
its associated text fragment. If it is a primitive action, Steve demonstrates it as follows:

1. First, Steve moves to the location of the object he needs to manipulate by sending a
locomotion motor command, along with the object to which he wants to move. Then,
he waits for perceptual information to indicate that he has arrived. (This typically
takes multiple decision cycles; during this period, Steve repeatedly executes a simple
"wait" operator.)

2. Once Steve arrives at the desired object, he explains what he is going to do. This in-
volves describing the step while pointing to the object to be manipulated. To describe
the step, Steve outputs a speech specification with three pieces of information:

• the name of the step - this will be used to retrieve the associated text fragment

• whether Steve has already demonstrated this step - this allows him to acknowl-
edge the repetition

• a rhetorical relation indicating the relation in the task model between this step
and the last one Steve demonstrated - this is used to generate an appropriate
cue phrase

Research has shown that human speakers often use cue phrases to indicate the rhetor-
ical relation between one utterance and another (Grosz k Sidner 1986; Moore 1993).
Steve currently uses cue phrases to mark several types of rhetorical relations:

• If the last step was to introduce a composite step, and the current step is a child
of that step, Steve says "First, ...".

• If the previous step achieved a precondition of the current step, Steve says "Now
we can ...".

• If there is an ordering constraint in the task model specifying that the last step
must precede the current step, Steve says "Next, ...". (This is used only when
the previous cue phrase does not apply.)

• If the current step precedes the last step in the task model, it represents an
interruption, so Steve says "Oh, I need to ...".

These cue phrases help to structure the demonstration, hopefully aiding the student's
comprehension. Once Steve sends the motor command to generate the speech, he
waits for an event from the perception module indicating that the speech is complete.

3. When his speech is complete, he performs the task step. This is done by sending
an appropriate motor command and waiting for evidence in his perception that the
command was executed. For example, if he sends a motor command to press buttonl,
he waits for his perception snapshot to include buttonl_state depressed.

4. If appropriate, he explains the results of the action, using the appropriate text frag-
ments.

22

Actually, this sequence of events in demonstrating a primitive action is not hardwired
into Steve. Rather, each item in the sequence is an independent capability, and each action
type in the action library is associated with an appropriate suite of such items. Each suite
is essentially a finite state machine represented as Soar productions. By representing a suite
as a finite state machine rather than a fixed sequence, Steve's demonstration of an action
can be more reactive and adaptive. Most of the actions in our current action library use
the sequence above, but our approach gives Steve the flexibility to demonstrate different
types of primitive actions differently.

Steve is sensitive to the student while demonstrating. For example, when Steve ref-
erences an object and points to it, he checks whether the object is in the student's field
of view. If not, he says "Look over here!" and waits until the student is looking before
proceeding with the demonstration.

6.6.3 Let me finish

Steve's demonstrations can end in one of two ways. Typically, he completes the task and
announces his completion. However, we also allow the student to request "Let me finish."
In this case, Steve acknowledges that the student can finish the task, and he shifts to
monitoring the student.

6.7 Monitoring a Student

Often, Steve's role is to monitor a student performing a task, providing assistance when
needed. For example, Steve might first demonstrate a task and then suggest that the
student try it. Or, as described in the previous section, the student might interrupt Steve's
demonstration and ask to finish the task. In either case, Steve's role in monitoring a student
is to maintain his own plan for completing the task and to use it to assess the student's
actions and to answer questions.

Steve's ability to adapt to unexpected events is especially useful when monitoring a
student. Most tutoring systems require the student to follow the tutor's plan, because the
tutor would be unable to adapt to unexpected deviations. In contrast, we want to give the
student the flexibility to deviate from the standard procedure, make mistakes, and learn
to recover from them. Such flexibility is a prime advantage of simulation-based training; it
allows students to gain exposure to a wide variety of situations, and it encourages them to
learn from their own mistakes. Steve's approach of repeatedly re-evaluating and possibly
revising his plan supports such flexibility; he can typically provide assistance to the student
even when the student took unexpected actions and landed in an unusual state of the world.

Steve's approach to goal assessment and plan construction is the same for monitoring
as it is for demonstration. The main difference between monitoring and demonstration is
that, when monitoring, Steve allows the student to take the actions. There is one exception:
Steve must still perform any sensing actions in the plan (e.g., checking whether a light comes
on). Sensing actions do not cause observable changes in the virtual world; they only change
the mental state of the student. In order to update his own plan, Steve must recognize
when the goals of a sensing action are achieved. Therefore, whenever a sensing action is
appropriate (i.e., the next step in Steve's plan), if the student is looking at the appropriate
object (i.e., it is in the student's field of view), Steve performs the sensing action, records
the result, and assumes that the student did the same.

In the remainder of this section, we outline Steve's capabilities relevant to monitoring a

23

student. The details of these capabilities are not important; additional sophistication could,
and will, be added to each. The important point is to show how Steve's domain knowledge,
and his abilities to use the knowledge, allow him to assist the student in a variety of ways.

6.7.1 Evaluating the student's actions

Using his own assessment of the task goals, and his plan for completing the task, Steve can
evaluate the student's actions. When the student performs an action, Steve must identify
the steps in the task model that match the action. If none of the matching steps is an
appropriate next step, the student's action is incorrect. In this case, Steve could provide
feedback to the student, ranging anywhere from a simple shake of his head or look of
disapproval to an explanation of why the action is incorrect (e.g., a precondition is not
satisfied or the step is precluded by another step). Currently, Steve simply says "no" and
shakes his head, but we will be experimenting with different forms of feedback soon. When
the student's action is correct, Steve nods his head in agreement.

6.7.2 What should I do next

The student can always ask Steve "What should I do next?" To answer this question, Steve
simply suggests the next step in his own plan. Unlike most tutoring systems, Steve can
suggest appropriate steps even when the student deviates from the standard procedure, as
mentioned earlier. This is a direct consequence of Steve's ability to adapt the procedure to
unexpected events, in this case the student's unexpected actions.

If there are multiple possible next steps, Steve currently enumerates them. In some cases,
this is appropriate. However, in other cases, Steve could provide a more focused answer if
he knew more about the student's current focus (e.g., the subtask on which the student is
currently working). Plan recognition algorithms infer such information, so they could be
used to maintain the discourse focus stack during monitoring. Steve's plan representation
provides the information that most plan recognition algorithms require, but we have not
yet added this capability.

It is also possible that Steve does not know what to do next. This could happen if no
subset of the task model is sufficient for completing the task. For example, the student
may have permanently damaged the virtual equipment. In the domains where we have
tested Steve, the simulator has not supported such irreversible actions. Nonetheless, Steve
currently handles such situations by simply explaining that he does not know what to do
next. In the future, we could extend Steve to explain the flaws in his plan that he does not
know how to resolve (i.e., the preconditions he does not know how to achieve).

6.7.3 Show me what to do

The student may understand what to do but not how. In this case, the student can tell Steve
"Show me what to do." Steve responds to such questions by demonstrating the next step, as
described in the previous section. Clearly, this is a capability that traditional disembodied
tutors cannot provide.

If there are multiple possible next steps, Steve currently chooses one of them randomly.
As mentioned before, plan recognition could provide information about the student's current
focus, leading to a more informed choice.

24

Steve: I suggest that you press the function test button.
Student: Why?

Steve: That action is relevant because we want the drain monitor in test mode.
Student: Why?

Steve: That goal is relevant because it will allow us to check the alarm light.
Student: Why?

Steve: That action is relevant because we want to know whether the alarm light
is functional.

 Figure 7: Example explanations generated by Steve

6.7.4 Explaining the relevance of a step or goal

When Steve suggests that the student perform an action, we want to allow the student to
ask what the role of that action is in the task. Without an understanding of the rationale
for each step in a procedure, students are forced to simply memorize the steps. In contrast,
an understanding of the causal structure of a task should help students remember the
procedure, adapt it when necessary, and apply their knowledge to related tasks.

Figure 7 shows Steve's ability to rationalize suggestions. In this example, Steve is
monitoring the student and suggests that the student press the function test button. When
the student asks why, Steve explains the goal of that action: it will put the drain monitor
in test mode. The example also illustrates Steve's ability to answer follow-up questions;
when the student asks why that goal is relevant, Steve explains that it will enable another
relevant action. The student can continue asking such follow-up questions until, ultimately,
the initial suggestion has been related to an end goal of the task that the student was given.

Steve generates such explanations from the causal links in the plan. Recall from Sec-
tion 6.5 that if a step or goal is relevant (i.e., in the current plan), it is for one of three
reasons:

1. It is an end goal of the top-level task.

2. It is a precondition of a relevant primitive plan step.

3. It is a primitive plan step that achieves a relevant, unsatisfied goal.

These connections between steps and goals are specified by the causal links in the plan.
Thus, one advantage to having Steve maintain a plan is that he can use it to rationalize his
suggestions.

Although our current approach to explanation simply follows causal links one by one
(driven by follow-up questions), our plan representation supports many other explanation
strategies as well. For example, using a model of the student's knowledge, Steve could
skip over causal links that the student is presumed to understand. Similarly, Steve could
purposely skip over some causal links in order to motivate an action in terms of a more
distant goal, forcing the student to relate the action to that goal. Also, since plans are
represented hierarchically, Steve could provide suggestions and explanations at various levels

25

of detail based on the student's knowledge and Steve's pedagogical style. Providing a rich
foundation for explanation was a prime motivation for choosing hierarchical plans as the
representation for tasks.

6.8 Episodic Memory and After-Action Review

The previous section described Steve's ability to rationalize his suggestions. In that case,
Steve can explain the relevance of a step or goal to completing the task by inspecting his
current plan. In addition, we wanted Steve to be able to rationalize his own actions during
an after-action review. When Steve completes a demonstration, he asks the student whether
they have any questions. At this point, they can ask him to rationalize any one of his actions
during the demonstration, and they can ask follow-up "Why?" questions as described in
the previous section. To answer such questions, Steve cannot rely on his current plan, since
the task is already complete and the step in question is no longer relevant.

To support such questions, Steve employs the episodic memory capability of the Debrief
system (Johnson 1994). Debrief includes a set of production rules that enable Soar agents to
remember their actions and the situations in which they occurred. It uses Soar's chunking
capability (Laird, Newell, & Rosenbloom 1987) to represent and recall situations efficiently.
When the student asks why Steve performed an action, Steve triggers the Debrief pro-
ductions to recall the situation in which the action was performed (i.e., Steve's perception
snapshot and mental state). Given the recalled situation, Steve uses his standard methods
for goal assessment and plan construction to reconstruct his plan. Using this past plan,
Steve rationalizes his action and answers follow-up questions as described in the previous
section.

7 Motor Control

7.1 Overview

The motor control module receives motor commands from the cognition module and de-
composes them into a sequence of lower-level commands that are sent to other components
via the message dispatcher. Therefore, this module controls Steve's appearance and voice,
and it allows Steve to cause changes in the virtual world.

The motor control module accepts a variety of motor commands:

• Speak a text string to a person, agent, or everyone.

• Send a speech act to an agent (this allows the agent to understand associated spoken
text).

• Move to an object.

• Look at an object, agent, or person.

• Nod the head in agreement or shake it in disagreement.

• Point at an object.

• Move the hand to a neutral position (i.e., not manipulating or pointing at anything).

26

• Manipulate an object. For each primitive action in the cognition module's action
library, there is a corresponding motor command that the motor control module ac-
cepts. These are easy to add, since they are built on top of Steve's lower-level body
control capabilities, which are discussed below. Currently, Steve can press objects
(e.g., buttons), flip switches, turn valves, move objects short distances (i.e., distances
that do not require Steve to move also), and pull and push objects (e.g., a dipstick).

The motor control module maps these commands into messages that it sends to the
message dispatcher to cause changes in the virtual world. The messages it sends fall into
three categories:

actions Some messages inform the simulator of Steve's actions. Steve takes actions by
sending the same messages that would be sent by a visual interface component if
a person took the action: he can "touch" and "release" objects. In addition, to
manipulate objects that a person would touch and drag (e.g., a throttle), Steve sends
a message specifying the desired endpoint of the manipulation (e.g., set the throttle at
3000 rpm); the simulator responds to such messages by moving the object gradually
to the specified endpoint.

speech When the cognition module sends a motor command to generate speech, the motor
control module sends a corresponding message to the message dispatcher, which will
cause the appropriate speech generation components to generate the speech. When
starting Steve, a user can configure his voice (gender, speaking rate, vocal tract size,
and pitch), and this voice will be used whenever he speaks.

body animation Steve supports a set of primitive body control commands. The mo-
tor control module converts motor commands from the cognition module into some
combination of these primitive commands. Each primitive command causes Steve to
broadcast low-level messages to the visual interface components to move or rotate
Steve's body parts. To create a new body for Steve, one only has to redefine these
primitive commands, which include the following:

• Move to an object.

• Look at an object, agent, or person (turn the head only).

• Look at an object, agent, or person (focus the whole body).

• Nod the head in agreement or shake the head in disagreement.

• Point at an object.

• Press an object.

• Grasp an object.

• Move the hand to a neutral position.

• Switch to a "speaking" facial expression.

• Switch to a neutral (non-speaking) facial expression.

(We are currently extending this set to include a wider variety of facial expressions.)

The ability to completely replace Steve's body by reimplementing a small set of body
primitives allows us to experiment with different bodies. Since Steve teaches physical tasks,
some variant of a human form seems most appropriate. The question is how much detail is

27

needed. For simply demonstrating actions, a hand is often sufficient. Adding a head opens
up additional channels of communication; for example, it allows the student to track Steve's
gaze. Simple representations, such as a head and hand, are actually better than a full human
figure in some respects. For example, a full human figure is more visually obtrusive, which
can be a disadvantage since current head-mounted displays offer a relatively narrow field of
view. Nonetheless, a full human figure representation offers exciting possibilities; it allows
more realistic demonstrations of physical tasks and a richer use of gestures and other types
of nonverbal communication. Because our architecture makes it easy to plug in different
bodies, we can evaluate the tradeoffs among them.

We have experimented with several bodies for Steve. At the simple end of the spectrum,
we tried a hand alone and then a hand and head. At the complex end, we tried a full
human figure, using the Jack software (Badler, Phillips, k Webber 1993) developed at the
University of Pennsylvania. In the long run, Jack is an exciting prospect. However, our use
of Jack was limited, since Jack comes with its own visual interface, and cannot run in others.
Since his visual interface does not support our architecture for creating virtual worlds, our
use of Jack was awkward: we had to send him movement commands, then query him for
the resulting position and orientation of his body parts, then update our own graphical
representation of Jack's body. Our most recent body for Steve was shown in Section 2. It
includes the upper half of a full human figure, and the head includes movable eyes, eyelids,
eyebrows, and lips.

Regardless of which body we use, our approach to animation is the same: the motor
control module sends out messages to move and rotate graphical models of Steve's body
parts. In contrast, some other researchers, such as Stone and Lester (1996) and Andre
and Rist (1998), create a library of animation sequences, and they dynamically string these
together to control their agent's behavior. Our approach provides a finer granularity for
behavior and allows Steve to interact with new virtual worlds without requiring the course
author to build a domain-specific library of animation clips.

The remainder of this section will discuss control of Steve's body in more detail, specif-
ically locomotion, gaze, and hand control.

7.2 Locomotion

To control Steve's locomotion, the cognition module sends a motor command to move Steve
to a specified object. To implement this command, the motor control module performs sev-
eral steps. First, it plans a collision-free path from Steve's current location to the specified
object. Recall from Section 5 that the perception module maintains an adjacency graph for
the objects in the virtual world. An edge between two objects in the graph indicates that
Steve can move from one to the other without colliding with other objects (e.g., a wall).
Given Steve's current location (one object) and his specified destination (another object),
the motor control module uses Dijkstra's shortest path algorithm (Cormen, Leiserson, &
Rivest 1989) to compute a path.

Next, the motor control module moves Steve along this path, one leg at a time. For
each leg of the path (i.e., movement from one object to the next), it does the following:

1. It determines the location, in Cartesian coordinates, where Steve should end up. To
do this, it asks for a bounding sphere for the destination object from the perception
module. Starting with the object's origin, it uses the object's radius and front vector
to determine a point at the front, right corner of the object. Finally, it uses a default

28

offset to move slightly farther in front of the object and to its right. (If the course
author specified an agent location offset for the object, this is used instead of the
default.)

2. Next, it sends a message to the visual interface components to cause Steve's body and
gaze to focus on the destination object.

3. After waiting half a second for Steve's shift of gaze to complete, it sends another
message to move Steve along a path from his current location to the specified location.

When Steve arrives at the desired location, the visual interface components send a message.
At this point, the perception module updates Steve's location and the motor control module
sends him on the next leg of the path.

7.3 Gaze

Steve shifts his gaze in many different situations. Some of these shifts are triggered ex-
plicitly by the cognition module. Others are triggered by the motor control module in
performing another motor command. In rare cases, gaze shifts can be triggered directly
by the perception module (a sort of knee-jerk reaction). Gaze shifts occur in the following
situations:

• When moving from location to location, he looks where he is going (triggered by motor
control module).

• He looks at an object when manipulating it (triggered by motor control module).

• He looks at an object before pointing at it (triggered by motor control module).

• He looks at a person or agent when talking to them (triggered by motor control
module).

• If someone other than he interacts with an object, he looks at the object (triggered
by perception module).

• If he is waiting for someone, he looks at them (triggered by cognition module).

• When he is monitoring a student performing a task, he looks at the them (triggered
by cognition module).

• When executing a sensing action, he looks at the object being sensed (triggered by
cognition module).

• When someone informs him of something, he looks at them and nods (triggered by
cognition module).

The code to control Steve's gaze has recently become more autonomous. Previously,
each movement of the head required the perception module to query the visual interface
components for the position of the gaze's target. After receiving this information, the
motor control module sent a command to the visual interface components to rotate the
head towards the target. More recently, the visual interface components accept a command
to have Steve's gaze track an object, person, or agent; after animating the shift, the head
is rotated automatically every frame to remain looking at the target. Moreover, the visual

29

interface components will recognize Steve's limits of motion; for example, if an object is
moving around Steve, he will track it over his left shoulder until it moves directly behind
him, at which point he will track it over his right shoulder.

7.4 Hand Control

To animate Steve's hands, we defined four possible poses for each one: resting, pointing,
pressing, and grasping. When Steve is not doing something with his hands, they are resting
at his sides. To manipulate or point at an object, the motor control module first gets the
bounding sphere for the object. Next, it sends commands to animate the movement of the
hand to the object. The pressing and grasping hands are placed at the front side of the
object (as specified by the object's front vector), and their orientation is determined by
the press and grasp vectors for the object, whichever is appropriate. The pointing hand
is placed at the point on the object's bounding sphere closest to Steve's corresponding
shoulder, oriented so that it points to the object's origin. The visual interface components
animate the movement of the hand from its initial position to its target position, controlling
the corresponding movements of the arms as needed.

When Steve's hand is in the proper position, the motor control module sends a com-
mand to tether it to the object (i.e., sustain a constant position and orientation relative
to the object). This serves two purposes. First, it allows Steve to turn his body (e.g., to
speak to the student) without causing an undesired change in the hand's position relative
to the object. Second, it supports the hand animation for Steve's object manipulations.
For example, after tethering Steve's finger to a button, the motor control module sends a
command to the simulator to simulate the button being pressed. The simulator animates
the movement of the button, and Steve's finger (and hence hand and arm) track the move-
ment of the button, providing the illusion that he is pushing it. This approach works well
when the object's movement is within the flexibility of Steve's arms and hands, which has
been the case so far.

8 Status and Evaluation

Steve has been tested on a variety of Naval operating procedures. He can perform tasks on
several of the consoles that are used to control the gas turbine engines that propel Naval
ships, he can check and manipulate some of the valves that surround these engines, and he
can perform a handful of procedures on the high-pressure air compressors that are part of
these engines. We are continuing to extend his capabilities in these areas.

We are planning a set of evaluations, both within USC and in collaboration with the
Air Force Armstrong Laboratory. We plan to investigate experimentally which factors
contribute to the effectiveness of agent-based instruction. In particular, we are interested
in determining which of the following factors are critical: a) whether or not the agents can
cohabit the virtual world with students, b) the type of embodiment (graphical realization)
of the agent, c) whether or not the agents have pedagogical capabilities, and d) the degree
of fidelity and believability of the agent's behavior.

While this paper focuses on training a single student to perform a a one-person task,
we have extended Steve to support team training. This required extensions to Steve's task
knowledge to represent the various team members and the task steps for which they are
responsible, extensions that allow Steve to make use of such knowledge, and extensions to
allow Steve to generate and understand task-specific communication with teammates. A

30

short paper by Johnson et al. (1998) provides a brief overview, and the details will appear
in a future paper. In our most complicated team scenario to date, five team members
must work together to handle a loss of fuel oil pressure in one of the ship's gas turbine
engines. This task involves a number of subtasks, some of which are individual tasks while
others involve sub-teams. All together, the task consists of about three dozen actions by
the various team members. We have tested this scenario with two students and five agents;
three of the agents serve as the students' team members, and two of the agents serve as
their tutors.

9 Related Work

The most closely related pedagogical agent for virtual reality was developed by Billinghurst
and his colleagues (Billinghurst & Savage 1996; Billinghurst et al. 1996). Their agent in-
habits a three-dimensional, simulated nasal cavity, providing assistance in sinus surgery to
medical students. The agent can demonstrate surgical steps, monitor students performing
surgery, intervene when a student skips a step, and tell a student what to do next when
asked. However, their agent does not have an animated form; it communicates with students
via a disembodied voice, and it demonstrates surgical steps by moving virtual instruments
around and controlling the student's viewpoint. Unlike Steve, their agent is also capable
of natural language understanding and gesture recognition. Their agent represents domain
tasks as hierarchical scripts (Schänk & Abelson 1977), which are similar to Steve's hierar-
chical plans. However, whereas Steve continually re-evaluates his plans against the current
state of the virtual world, their agent merely keeps track of which steps have been executed,
so it cannot adapt to unexpected events or allow the student flexibility in performing tasks
as Steve can.

Lester and his colleagues are developing two animated pedagogical agents, Herman the
Bug (Stone & Lester 1996) and Cosmo (Lester et al. 1998). These agents do not inhabit
three-dimensional virtual worlds; they appear as two-dimensional characters floating on
top of a two-dimensional image of a simulated world. The agents are notable for their
approach to behavior control; they control their behavior by dynamically selecting audio
and visual segments from a large, domain-specific library. This approach is quite labor-
intensive, requiring considerable effort by artists and animators in building up the library,
but it results in high quality animation. Unlike Steve, Herman and Cosmo do not interact
with a simulator, nor do they have any abilities to plan or replan procedural tasks.

Several people have developed animated agents that can generate presentations. The
PPP Persona (Andre & Rist 1996; Andre, Rist, & Mueller 1998) is an animated agent
that combines speech and gestures to describe procedures for operating physical devices.
The agent's body is controlled by flipping between different bitmap images of the agent in
different poses. The agent cannot interact with a simulation, and it has no pedagogical
capabilities except the ability to describe a procedure. However, it is notable for its ability
to plan and schedule a sequence of presentation acts (e.g., speech and gestures). Another
agent, Presenter Jack (Noma & Badler 1997), is a full human figure that uses speech,
gestures, and short-range locomotion to give presentations. The human figure animation
is provided by the Jack software (Badler, Phillips, k Webber 1993). Unlike Steve, the
presentations are not interactive; they are scripted by a human. The work is notable for its
use of a full human figure and its analysis of how gestures and gaze are used in presentations.

A variety of researchers have studied control of animated human figures. Several projects

.31.

at the University of Pennsylvania are most relevant to our work. Although none of these
projects has focused on pedagogical or presentation capabilities, they are notable for their
sophisticated control of animated humans. Trias et al. (1996) developed an agent that
can play hide-and-seek with other virtual agents. The agent uses a hierarchical planner
for some complex actions, incorporates a separate search planner for finding objects in
the environment, and can move around in the virtual environment. Geib et al. (1994)
developed an agent that integrates a high-level planner with a search planner for finding
objects and another planner for manipulating objects. The ability to realistically grasp
objects in a task-dependent manner, as described by Douville et al. (1996), would be
an especially valuable extension to Steve. Cassell et al. (1994) developed an agent that
integrates speech, gestures, and facial expressions in the context of a dialogue. Their agent
uses a greater variety of nonverbal communicative acts than Steve, and these acts are also
more tightly integrated with spoken utterances; such close coupling of verbal and nonverbal
communication is crucial to achieving human-like conversational abilities in Steve.

In addition to improving Steve's conversational abilities, we must improve the student's
ability to communicate with Srteve. The most critical problem is that Steve is not capable
of understanding natural language, so the student is limited to prespecified speech utter-
ances. The TRAINS system (Allen et al. 1996; Ferguson, Allen, k Miller 1996) supports
a robust spoken dialogue between a computer agent and a person working together on a
task. However, their agent has no animated form, and does not cohabit a virtual world
with users. Because TRAINS and Steve carry on similar types of dialogues with users, yet
focus on different aspects of such conversations, a combination of the two systems seems
promising. Ultimately, we must allow students to use the full range of nonverbal commu-
nicative acts that people employ in face-to-face communication. For example, the Gandalf
agent (Thorisson 1996; Cassell & Thorisson 1998) supports full multi-modal conversation
between human and computer. Like other systems, Gandalf combines speech, gesture, in-
tonation and facial expression. Unlike most other systems, Gandalf also perceives these
communicative signals in humans; people talking with Gandalf wear a suit that tracks their
upper body movement, an eye tracker that tracks their gaze, and a microphone that allows
Gandalf to hear their words and intonation. Although it may be some time before tech-
nology like Gandalf is practical, the system points the way towards an exciting future for
human-computer interaction.

10 Conclusion

Steve illustrates the enormous potential in combining work in agent architectures, intelligent
tutoring, and graphics. Steve draws on work in agent architectures by sensing the state of
the world, assessing task goals, constructing and revising plans, and sending out motor
commands to control the virtual world, all in a decision cycle that is executed multiple
times per second. He draws on work in intelligent tutoring by explaining tasks, monitoring
students, and answering questions. He draws on work in computer graphics to control his
animated body, including locomotion, gaze, gestures, and demonstrations of actions. When
combined, these technologies result in a new breed of computer tutor: a human-like agent
that can interact with students in a virtual world to help them learn.

32

11 Acknowledgments

This work is funded by the Office of Naval Research, grant N00014-95-C-0179. We are
grateful for the contributions of our many collaborators: Randy Stiles and his colleagues at
Lockheed Martin developed the visual interface component; Allen Munro and his colleagues
at Behavioral Technologies Laboratory developed the simulator; and Richard Angros, Ben
Moore, Behnam Salemi, Erin Shaw, and Marcus Thiebaux at ISI contributed to Steve. We
are especially grateful to Marcus, who developed the 3D model of Steve's current body and
the code in the visual interface component that controls its animation.

References

Allen, J. F.; Miller, B. W.; Ringger, E. K.; and Sikorski, T. 1996. Robust understanding
in a dialogue system. In Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics, 62-70.

Anderson, J. R.; Corbett, A. T.; Koedinger, K. R.; and Pelletier, R. 1995. Cognitive
tutors: Lessons learned. Journal of the Learning Sciences 4(2):167-207'.

Andre, E., and Rist, T. 1996. Coping with temporal constraints in multimedia presentation
planning. In Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI-96), 142-147. Menlo Park, CA: AAAI Press/MIT Press.

Andre, E.; Rist, T.; and Mueller, J. 1998. Employing AI methods to control the behavior
of animated interface agents. Applied Artificial Intelligence. This issue.

Badler, N. I.; Phillips, C. B.; and Webber, B. L. 1993. Simulating Humans. New York:
Oxford University Press.

Billinghurst, M., and Savage, J. 1996. Adding intelligence to the interface. In Proceedings
of the IEEE Virtual Reality Annual International Symposium (VRAIS '96), 168-175. Los
Alamitos, CA: IEEE Computer Society Press.

Billinghurst, M.; Savage, J.; Oppenheimer, P.; and Edmond, C. 1996. The expert surgical
assistant: An intelligent virtual environment with multimodal input. In Proceedings of
Medicine Meets Virtual Reality IV.

Burton, R. R. 1982. Diagnosing bugs in a simple procedural skill. In Sleeman, D., and
Brown, J., eds., Intelligent Tutoring Systems. Cambridge, MA: Academic Press. 157-183.

Cassell, J., and Thorisson, K. R. 1998. The power of a nod and a glance: Envelope vs.
emotion in animated conversational agents. Applied Artificial Intelligence. This issue.

Cassell, J.; Pelachaud, C; Badler, N.; Steedman, M.; Achorn, B.; Becket, T.; Douville,
B.; Prevost, S.; and Stone, M. 1994. Animated conversation: Rule-based generation of
facial expression, gesture and spoken intonation for multiple conversational agents. In
Proceedings of ACM SIGGRAPH '94-

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1989. Introduction to Algorithms. New
York: McGraw-Hill.

Douville, B.; Levison, L.; and Badler, N. I. 1996. Task-level object grasping for simulated
agents. Presence 5(4):416-430.

33

Ferguson, G.; Allen, J.; and Miller, B. 1996. Trains-95: Towards a mixed-initiative
planning assistant. In Proceedings of the Third Conference on AI Planning Systems.

Geib, C; Levison, L.; and Moore, M. B. 1994. Sodajack: An architecture for agents
that search and manipulate objects. Technical Report MS-CIS-94-16/LINC LAB 265,
Department of Computer and Information Science, University of Pennsylvania.

Grosz, B. J., and Sidner, C. L. 1986. Attention, intentions, and the structure of discourse.
Computational Liguistics 12(3):175-204.

Johnson, W. L.; Rickel, J.; Stiles, R.; and Munro, A. 1998. Integrating pedagogical agents
into virtual environments. Presence. Forthcoming.

Johnson, W. L.; Marsella, S.; and Rickel, J. 1998. Pedagogical agents in virtual team
training. In Proceedings of the Virtual Worlds and Simulation Conference, volume 30 of
Simulation Series. San Diego, CA: Society for Computer Simulation International.

Johnson, W. L. 1994. Agents that learn to explain themselves. In Proceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI-94), 1257-1263. Menlo Park, CA:
AAAI Press.

Korth, H. F., and Silberschatz, A. 1986. Database System Concepts. New York: McGraw-
Hill.

Labrou, Y., and Finin, T. 1994. A semantics approach for KQML - a general purpose
communication language for software agents. In Proceedings of the Third International
Conference on Information and Knowledge Management. ACM Press.

Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar: An architecture for general
intelligence. Artificial Intelligence 33(l):l-64.

Lester, J. C; Voerman, J. L.; Towns, S. G.; and Callaway, C. B. 1998. Deictic believabil-
ity: Coordinating gesture, locomotion, and speech in lifelike pedagogical agents. Applied
Artificial Intelligence. This issue.

McAllester, D., and Rosenblitt, D. 1991. Systematic nonlinear planning. In Proceedings
of the Ninth National Conference on Artificial Intelligence (AAAI-91), 634-639. Menlo
Park, CA: AAAI Press.

Moore, J. D. 1993. What makes human explanations effective? In Proceedings of the 15th
Annual Conference of the Cognitive Science Society, 131-136.

Munro, A., and Surmon, D. 1997. Primitive simulation-centered tutor services. In Proceed-
ings of the AI-ED Workshop on Architectures for Intelligent Simulation-Based Learning
Environments.

Munro, A.; Johnson, M.; Surmon, D.; and Wogulis, J. 1993. Attribute-centered simulation
authoring for instruction. In Proceedings of the World Conference on Artificial Intelligence
in Education (AI-ED '93), 82-89. Association for the Advancement of Computing in
Education.

Newell, A. 1990. Unified Theories of Cognition. Cambridge, MA: Harvard University
Press.

Noma, T., and Badler, N. I. 1997. A virtual human presenter. In Proceedings of the IJCAI
Workshop on Animated Interface Agents: Making Them Intelligent, 45-51.

34

Rickel, J. 1988. An intelligent tutoring framework for task-oriented domains. In Proceedings
of the International Conference on Intelligent Tutoring Systems.

Russell, S., and Norvig, P. 1995. Artificial Intelligence: A Modern Approach. Englewood
Cliffs. NJ: Prentice Hall.

Sacerdoti, E. 1977. A Structure for Plans and Behavior. New York: Elsevier North-
Holland.

Schänk, R., and Abelson, R. 1977. Scripts, Plans, Goals and Understanding. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Stiles, R.; McCarthy, L.; and Pontecorvo, M. 1995. Training studio: A virtual environment
for training. In Workshop on Simulation and Interaction in Virtual Environments (SIVE-
95). Iowa City, IW: ACM Press.

Stone, B. A., and Lester, J. C. 1996. Dynamically sequencing an animated pedagogical
agent. In Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI-96), 424-431. Menlo Park, CA: AAAI Press/MIT Press.

Thorisson, K. R. 1996. Communicative Humanoids: A Computational Model of Psychoso-
cial Dialogue Skills. Ph.D. Dissertation, Massachusetts Institute of Technology.

Trias, T. S.; Chopra, S.; Reich, B. D.; Moore, M. B.; Badler, N. I.; Webber, B. L.; and
Geib, C. W. 1996. Decision networks for integrating the behaviors of virtual agents
and avatars. In Proceedings of the IEEE Virtual Reality Annual International Symposium
(VRAIS '96), 156-162. Los Alamitos, CA: IEEE Computer Society Press.

Weld, D. S. 1994. An introduction to least commitment planning. AI Magazine 15(4):27-
61.

35

» t

Lockheed Martin VET Quarterly Report July 1998

Appendix B

Pedagogical Agents

Invited Paper at the International Conference on Computers in Education

LMMS Contract N00014-95-C-0179 . B ■ VET-Q10-R1

Pedagogical Agents
W. Lewis Johnson

Center for Advanced Research in Technology for Education (CARTE)
USC / Information Sciences Institute

4676 Admiralty Way, Marina del Rey, CA 90292 USA
johnson@isi.edu; http://www.isi.edu/isd/carte/

Abstract
Pedagogical agents are autonomous agents that support
human learning, by interacting with students in the
context of interactive learning environments. They
extend and improve upon previous work on intelligent
tutoring systems in a number of ways. They adapt their
behavior to the dynamic state of the learning
environment, taking advantage of learning opportunities
as they arise. They can support collaborative learning as
well as individualized learning, because multiple students
and agents can interact in a shared environment. Given a
suitably rich user interface, pedagogical agents are
capable of a wide spectrum of instructionally effective
interactions with students, including multimodal dialog.
Animated pedagogical agents can promote student
motivation and engagement, and engender affective as
well as cognitive responses. This paper surveys current
research in pedagogical agents, and describes some
current methods for investing agents with pedagogical
capabilities.

1. Introduction and Background
Over the last several years there has been significant

progress in techniques for creating autonomous agents,
i.e., systems that are capable of performing tasks and
achieving goals in complex, dynamic environments.
Architectures such as RAP (Firby 1994) and Soar (Laird
et al 1987) have been used to create agents that can
seamlessly integrate planning and execution, adapting to
changes in their environments. They are able to interact
with other agents, and collaborate with them to achieve
common goals (Müller 1996, Tambe et al 1995). Robust
autonomous agents have been built in a variety of
application areas, including mobile robots (Murphy and
Hershberger 1996), softbots (Doorenbos et al 1997), and
entertainment (Foner 1997).

A promising application area for autonomous agents
is education and training. The term pedagogical agent is
used to refer to agents that are designed to support human
learning, interacting with students in order to facilitate
their learning. Although pedagogical agents build upon
previous research on intelligent tutoring systems (Wenger
1987), they bring a fresh perspective to the problem of
facilitating on-line learning, and address issues that
previous intelligent tutoring work largely ignored. Peda-

gogical agents can adapt their instructional interactions to
the needs of the student and the current state of the
learning environment, helping students to overcome their
difficulties and taking advantage of learning oppor-
tunities. They can collaborate with students and with
other agents, integrating action with instruction; this
contrasts with typical intelligent tutoring systems that
only comment from the side and are only able to interact
with one student at a time. They are able to provide
continual feedback to students during their work. Finally,
they can appear to the students as lifelike characters, and
induce the same kinds of affective responses that other
kinds of lifelike characters engender.

The move from intelligent tutoring systems to
pedagogical agents began about ten years ago, when
researchers began to explore new types of interactions
between computers and students. (Chan and Baskin
1990) developed a simulated learning companion, which
acts as a peer instead of a teacher. (Dillenbourg 1996)
investigated the interaction between real students and
computer-simulated students as a collaborative social
process. (Chan 1996) has investigated other types of
interactions between students and computer systems, such
as competitors or reciprocal tutors. Current pedagogical
agent work further develops the notion of learning-
system-as-agent by placing learners and pedagogical
agents in rich interactive environments and broadening
the bandwidth of interaction between learners and agents.
This increases the complexity of interaction between
pedagogical agents and their environment, and hence the
need for agent architectures that can manage this
complexity; it also affords new possibilities for
interacting with students in order to foster learning.

Because pedagogical agents are autonomous agents,
they inherit many of the same concerns that autonomous
agents in general must address. They must exhibit robust
behavior in rich, unpredictable environments; they must
coordinate their behavior with that of other agents, and
must manage their own behavior in a coherent fashion,
arbitrating between alternative actions and responding to
a multitude of environmental stimuli. Their environment
includes both students and the learning environment in
which the agents are situated. Student behavior is by
nature unpredictable, since students may exhibit a variety
of aptitudes, levels of proficiency, and learning styles.

The need to support instruction imposes a combi-
nation of requirements on pedagogical agents that other

types of agents do not always satisfy. They need to have
knowledge of the tasks and skills that the students are
learning to perform, so that they can participate in the
students' activities as needed. However, a pedagogical
agent requires different types and representations of
domain knowledge than do agents whose job is simply to
perform the task. A pedagogical agent usually needs to
be capable of offering helpful hints when needed, giving
clarifying explanations, and answering student questions.
In order to support such instructional interactions, a
pedagogical agent requires a deeper understanding of the
rationales and relationships between actions than would
be needed simply to perform a task (Clancey 1983).

Particularly interesting issues arise when pedagogical
agents appear to the student as animated characters. An
animated pedagogical agent can engage in a continuous
dialog with the student, and emulate aspects of
multimodal dialog between humans in instructional
settings. Such animated agents share aspects in common
with synthetic agents developed for entertainment
applications (Elliott and Brzezinski 1998): they need to
give the user an impression of being lifelike and believ-
able, producing behavior that appears to the user as
natural and appropriate. In the case of pedagogical
agents, they must produce behavior that seems natural and
appropriate for the role that the agent is playing, i.e., a
virtual instructor or guide. As (Bates et al. 1992) have
argued, it is not always necessary for an agent to have
deep knowledge of a domain in order for it to generate
behavior that is believable. To some extent the same is
true for pedagogical agents. We frequently find it useful
to give our agents behaviors that make them appear
knowledgeable, attentive, helpful, concerned, etc. These
behaviors may or may not reflect actual knowledge
representations and mental states and attitudes in the
agents. However, the need to support pedagogical
interactions generally imposes a closer correspondence
between appearance and internal state than is typical in
agents for entertainment applications. We can create
animations that give the impression that the agent is
knowledgeable, but if the agent is unable to answer
student questions and give explanations, the impression of
knowledge will be quickly destroyed.

This article is intended to introduce the reader to
some of key capabilities of pedagogical agents, and
techniques for implementing these capabilities. A full
technical account is beyond the scope of this brief article;
the reader is encouraged to consult the publications cited
in the reference section for further information.

2. Example Pedagogical Agents
The following discussion will make frequent

reference to the specific instances of pedagogical agents
that have been built in research laboratories around the

world. These systems will be used to illustrate the range
of behaviors that these agents are capable of producing,
and the design requirements that such agents must satisfy.
Some of these behaviors are similar to those found in
intelligent tutoring systems, others are quite different and
unique.

USC / Information Sciences Institute's Center for
Advanced Research in Technology for Education
(CARTE) has developed two pedagogical agents: Steve
(Soar Training Expert for Virtual Environments) and
Adele (Agent for Distance Learning - Light Edition).
Steve is an advanced prototype designed to interact with
students in networked immersive virtual environments,
and has been applied to naval training tasks such as
operating the engines aboard US Navy surface ships
(Johnson et al 1998, Johnson and Rickel 1998, Rickel and
Johnson 1998, and Rickel and Johnson 1997). Immersive
virtual environments permit rich interactions between
humans and agents; the students can see the agents in
stereoscopic 3D and hear them speak, and the agents rely
on the virtual environment's tracking hardware to monitor
the student's position and orientation in the environment.
Steve software is combined with 3D display and
interaction software by Lockheed Martin, simulation
authoring software by USC Behavioral Technologies
Laboratory, and speech recognition and generation soft-
ware by Entropie Research to produce a rich virtual
environment in which students and agents can interact in
instructional settings. Adele, in contrast, was designed to
run desktop platforms with conventional interfaces, in
order to broaden the applicability of pedagogical agent
technology. Adele runs in a student's Web browser, and
is designed to integrate into Web-based electronic
learning materials (Johnson and Shaw 1997). Adele-
based courses are currently being developed for
continuing medical education in family medicine and
graduate level geriatric dentistry, and further courses are
planned for development both at USC and at the
University of Oregon.

North Carolina State University's Multimedia
Laboratory has developed two pedagogical agents:
Herman the Bug (Lester and Stone 1997) and Cosmo
(Towns et al 1998). Herman was developed as part of the
Design-A-Plant learning environment, a learning environ-
ment that helps middle school students to understand
botanical anatomy and physiology by designing plants for
various hypothetical environments. Cosmo operates in
the realm of computer networks, and helps students to
solve problems such as how to route packets between
network hosts so as to avoid high-traffic routes. These
projects have investigated a number of research issues
such as how to combine various agent behaviors in order
to enhance the impression of believability on the part of
the student, and how to manage mixed-initiative dialog.
Herman the Bug has been used in large-scale empirical

evaluations that have demonstrated the effectiveness of
pedagogical agents in facilitating learning (Lester et al
1997).

Andre, Rist, and Müller at DFKI at the University of
Saarbrücken have developed an animated persona for
giving on-line presentations, called PPP Persona (Andre
et al 1998). PPP Persona guides the learner through Web-
based materials, using pointing gestures to draw the
student's attention to elements of the Web pages, and
providing commentary via synthesized speech. The
underlying PPP system generates multimedia presentation
plans for PPP Persona to present; PPP Persona then
executes the plan adaptively, modifying it in real time
based on user actions such as repositioning the persona on
the screen or asking follow-on questions.

3. Types of Interaction with
Pedagogical Agents

Pedagogical agents can interact with students in a
number of different ways. The following examples
illustrate the various types of student-agent interactions
that have been explored to date. Screen shots and text
descriptions have been used to give the reader a sense of
how these interactions are manifested. However, such
static presentations are a poor substitute for live
interactions with these agents. Live demonstrations and
downloadable software are available on the World Wide
Web, both at the CARTE Web site
(http://www.isi.edu/isd/carte/), and the DFKI PPP Web
site (http://www.dfki.edu/~jmueller/ppp).

When students are first introduced to a topic, it is
often necessary to demonstrate to them how to solve
problems and perform tasks. Pedagogical agents are well
suited to performing such demonstrations. Figures 1 and
2 show Steve performing such a demonstration, showing
how to operate a High Pressure Air Compressor (HPAC)
aboard a US Navy ship.

Demonstrations by themselves are not very
instructive unless the student watching the demonstration
understands what is being done. Steve therefore inte-
grates his demonstrations with explanatory commentary.
Text descriptions of objectives and actions are generated,
and are uttered using a commercial text-to-speech
generator. Figure 1 shows Steve in the context of
explaining what to do, where he says the following.

I will now perform a functional check of the
temperature monitor to make sure that all of the
alarm lights are functional. First press the function
test button. This will trip all of the alarm switches,
so all of the alarm lights should illuminate.

Steve then proceeds with the demonstration, as shown in
Figure 2. As the demonstration proceeds Steve points out
important features of the objects in the environment that

relate to the task. For example, when the alarm lights
illuminate, the Steve points to the lights, and says: "All of
the alarm lights are illuminated, so they are all working
properly."

Figure 1. Steve pointing to a button on the HPAC
console

Figure 2. Steve pressing a button on the console

Having an agent demonstrate tasks, instead of simply
showing a student a video of the procedure, offers a
number of advantages. The student is free to move
around in the environment, and view the demonstration
from various perspectives. If the demonstration is being
performed in a dynamic environment, as in Steve's case,
the demonstration dynamically adapts to the current state
of the environment. This allows Steve to demonstrate the

operation of the HP AC in different initial states and
failure modes. Steve also adapts his demonstrations
according to the actions of the user. Steve is gazing
toward the user in Figure 1: this illustrates how Steve
dynamically directs his gaze toward the student during the
demonstration whenever he wants to attract the student's
attention or speak to the student. Demonstrations also
adapt to shifts in control between Steve and the student.
At any time the student can say, "Let me finish" to Steve,
at which point Steve lets the student complete the task
himself while Steve monitors the student's actions. Then
if the student encounters difficulties he can ask Steve to
"Show me what to do," at which point Steve demonstrates
the appropriate next action to take. Thus student
monitoring, the ability to track and interpret the intent
behind the student's actions, is essential in order to permit
mixed initiative demonstrations.

Figure 3. Adele observing a case

Steve is alone among current pedagogical agents in
having a well-developed demonstration capability,
integrating demonstrations with explanations. However,
other agents have the ability to guide a student through a
task, much as intelligent tutoring systems do, and guiding
is similar to demonstration in that it helps students
unfamiliar with the task to work their way through it. For
example, Adele has several capabilities that help to guide
the student, which she invokes if she is operating in
Advisor mode.1 If the student performs an action that is
inconsistent with standard practice, she will interrupt the
student and suggest an action to perform instead. Figures

1 Other interaction modes include Practice mode, where
she is available to give advice if asked but does not
interrupt if the student, and Examination mode, where she
observes and evaluates the student but does not offer
assistance.

3 and 4 illustrate this. Figure 3 shows an application of
Adele to clinical decision making. Adele observes as the
student performs a clinical evaluation of a patient. In this
example, a patient has arrived complaining of a lump on
her chest. If the student starts ordering laboratory tests
such as chest X-rays without first completing a physical
examination of the patient, Adele will interrupt saying
that "Before ordering a chest X-ray it would be useful to
listen to the condition of the lungs."

^ Adele

Before ordering a chest x-ray it
would be helpful to listen to the
condition of the lungs

Why? Hint? Show

{Warning: Applet Window

Figure 4. Adele critiquing a student's actions

Steve and Adele can both assist the student by means
of hints. These help to guide the student if he or she is
unclear about what to do. Hinting is usually available at
any time in courses assisted by Steve or Adele, unless the
student is being tested on their proficiency with the skill
being taught.

Expert instructors frequently use leading questions to
make sure that students properly understand the current
situation as they are solving a problem. Pedagogical
agents can also employ leading questions to probe
students' understanding. For example, in one of the
clinical decision making courses using Adele, the students
are presented with the case of a patient who has a lesion
that has been slowing growing over a period of months.
The student finds this out by asking the simulated patient
a series of questions about her disease history. As soon as
the student finds out that the patient's lesion has been

growing slowly, Adele jumps in and asks the student
identify the type of disease suggested by such a disease
process, i.e., fibroma.

Such use of leading questions is a special case of
opportunistic instruction, i.e., providing instruction when
situations arise where it is appropriate. Opportunistic
instruction is a valuable capability for pedagogical agents,
because it allows instruction to be delivered to students in
the context of solving problems, so that the students can
immediately put it to use. Herman the Bug, for example,
makes extensive use of problem solving contexts as
opportunities for instruction. When the student is
working on a selecting a leaf to include in a plant,
Herman uses this as an opportunity to provide instruction
about leaf morphology. Another type of opportunistic
instruction commonly provided by Adele is. providing
students with pointers to on-line medical resources that
are relevant to the current stage of the case work-up. For
example, when the student selects a diagnostic procedure
to perform on the simulated patient, Adele may point the
student to video clips showing how the procedure is
performed.

All of the agents mentioned in the previous section
are capable of generating explanations as needed.
Whenever Steve or Adele gives a hint, the student can ask
"Why" to find out the rationale for the hint. Steve takes
this further by allowing a series of "Why" questions, each
of which causes Steve to present higher-level rationales,
until Steve runs out of rationales to give. Herman and
Cosmo will generate unsolicited explanations if the
student makes a mistake or seems to be having difficulty
deciding how to proceed with the problem. Suppose, for
example, that a student is selecting a type of leaf to use in
a cold climate. If the student rolls over the textual
descriptions on the screen for thirty seconds, and does not
choose a leaf type, Herman will jump in and provide an
explanation the relationship between cold temperature and
leaf size, leaf thickness, and leaf skin thickness. If the
explanation does not enable the student to make a choice,
Herman will then provide direct advice of what action to
perform.

Animated pedagogical agents are increasingly
invested with the capability of generating emotive
responses to student actions. Emotive behaviors such as
facial expressions and body language can help engage and
motivate the learner, and alleviate student frustration by
appearing to empathize with the learner. A wide
repertoire of emotive behaviors have been built into
Cosmo, which are combined with speech utterances and
other types of nonverbal gestures when generating
explanations (Towns, FitzGerald, and Lester 1998).
Behaviors such as applause are used in conjunction with
congratulatory speech acts; head scratching or shrugging
are used when Cosmo poses a rhetorical expression.

Adele employs emotive facial expressions, showing
satisfaction when a student answers a question correctly,
agitation if the a situation has arisen in the learning
environment that requires the student's immediate
attention (e.g., the patient is experiencing difficulty
breathing), and displeasure if the student makes an error
that she should have known how to avoid.

The above examples have all described one-on-one
interactions between a student and an agent. However,
pedagogical agents can also be naturally applied to
collaborative and team learning. Team instruction has
been a particular focus of investigation for Steve. Steve's
learning environment can be simultaneously inhabited by
multiple students, each of whom plays the role of a
different crew member aboard a simulated ship. Steve
agents may be used to assist individual team members, or
play the role of missing team members. This requires
having each Steve agent understand how the roles of the
various team members interact and depend upon each
other.

These examples do not exhaust the range of capabil-
ities that are useful for pedagogical agents to provide.
Other capabilities that have been found to be important
for intelligent tutoring systems, such as student modeling
and assessment, are potentially useful for pedagogical
agents as well. As pedagogical agents are deployed in
instructional settings, it is expected that these further
intelligent tutoring capabilities will be incorporated into
them.

4. Architectures for Pedagogical
Agents

Given the range of capabilities that pedagogical
agents are intended to provide, it is essential that an agent
architecture be used that permits robust integration and
reconciliation of these capabilities, and which is capable
of generating behavior in real time. Three architectural
approaches are taken in the agents described in this
article: the behavior sequencing approach, the layered
generative approach, and the state machine compilation
approach.

The behavior sequencing approach
In the behavior sequencing approach, behaviors are

assembled out of a collection of prerecorded primitive
animations, sounds, and speech elements. The media
primitives are organized into a behavior space, structured
along several dimensions such as degree of exaggeration
of movement or types of body part involved in the
movement. Animated behaviors are created by a
behavior sequencing engine that constructs coherent paths
through the behavior space at real time. Assembling

behaviors out of prerecorded segments saves time in
creating the animation, and can yield high-quality
animations if the segments are created by expert anima-
tors. The behavior sequencing engine is responsible for
all planning decisions leading up to the creation of the
animation sequence.

The following example of behavior sequencing in
Herman the Bug illustrates this process. If Herman
intervenes in the lesson, say because the student is unable
to decide on a leaf type, the behavior sequencing engine
first selects a topic to provide advice about, some
component of the plant being constructed. The engine
then chooses how direct a hint to provide: an indirect hint
may talk about the functional constraints that a choice
must satisfy, whereas a direct hint proposes a specific
choice. The level of directness then helps to determine
the types of media to be used in the presentation: indirect
hints tend to be realized as animated depictions of the
relationships between environmental factars and the plant
components, while direct hints are usually rendered as
speech. Finally, a suitable coherent set of media elements
with the selected media characteristics are chosen and
sequenced.

The behavior sequencing approach is well suited for
applications employing 2D graphics or 3D graphics where
the camera is fixed. The main limitation of the approach
is that it does not provide for real-time adaptation of
behavior. If the student performs an action in the middle
of execution of the sequence, the behavior sequence may
no longer be appropriate and will have to be recomputed.

The layered generative approach
The layered generative approach generates

animations in real time, instead of assembling them from
a library of multimedia elements. The architecture is
divided into cognitive decision-making layer and a
perceptual-motor layer responsible for monitoring the
environment and generating the animations. Similar
layered architectures are used in other animated agents
such as the ALIVE system (Blumberg and Galyean 1995).
The cognitive component receives information about the
state of the environment from the perceptual component,
which may filter and abstract it into a form that is usable
by the cognitive component. The cognitive component
continually evaluates the state of the environment, and
makes decisions about actions that the agent should be
performed. These are realized in the form of motor
commands that are then sent to the perceptual-motor layer
for execution. This layered approach is useful because it
enables a separation of concerns, allowing agent decision
making and persona control to be dealt with separately.
However, it increases the amount of rendering
computation required to create the behavior, and provides

less scope for graphic artists to customize the agent's
behavior.

Steve's architecture is a particularly clear instance of
this layered approach. Steve consists of three main
modules: perception, cognition, and motor control. The
perception module monitors the underlying message bus
used in the overall Virtual Environment for Training
system for interprocess communication. If the Steve
agent is instructing a student, the perceptual module
tracks the student in the virtual environment, by querying
the human-computer interface manager controlling the
student's display. This provides information about the
student's location, orientation, field of view, and
interactions between the student and objects in the virtual
environment. The perceptual information also receives
information from the simulator module managing the
state of the information about state changes, and is
notified when students or other agents speak. The
perceptual module uses this information to construct and
maintain a symbolic model of the state of the world. The
cognitive component accesses this model as needed.
When it decides to take an action, the action is transmitted
as a motor command to the motor control module. The
motor control module in turn moves the agent's body
through the virtual world in response to the command.

The following is a list of the motor commands
supported by Steve's motor control module:
• Speak a text string to a person, an agent, or everyone.
• Send a speech act to an agent (e.g., Inform the agent

of something).
• Move to an object.
• Look at an object, agent, or person.
• Nod the head in agreement or shake it in

disagreement.
• Point at an object.
• Move the hand to a neutral position at the side of the

body.
• Manipulate an object, e.g., grasp it, turn it, flip it,

push it, pull it, etc.
These are motor commands are translated into one or
more primitive actions both on Steve's graphical body
and on the objects that Steve's body is manipulating. A
command may result in a series of actions being
performed, e.g., if Steve chooses to move to a particular
object it may be necessary for Steve's body to perform a
series of motions along a path in order to arrive at the
intended object.

The cognitive component of Steve is organized into
three main layers:
• Domain-specific task knowledge
• Domain-independent pedagogical capabilities
• The Soar cognitive architecture (Laird et al 1987).

Domain-specific task knowledge is provided for each
task that Steve helps instruct. This is in the form of a plan

schema for carrying out the task, as will be described in
the next section. The domain-independent pedagogical
capabilities include the general pedagogical functions
described in Section 3, such as demonstration, student
monitoring, and explanation.

The choice of Soar in this context merits some further
discussion. Soar was chosen because it has been used
extensively to create autonomous agents that model
human decision-making and behavior, e.g., in wargaming
simulations (Tambe et al 1995), and in modeling human
learning (Hill and Johnson 1993). It has been applied
successfully to tasks that involve interacting with
dynamic simulations. It provides support for integrating
and arbitrating between multiple capabilities or areas of
expertise.

Cognition in Soar involves repeatedly applying
operators on working memory representations. Processing
involves repeatedly executing a decision cycle, consisting
of the following steps.
• Input information from the external environment into

working memory.
• Apply elaboration rules, which draw inferences from

the information in working memory. Some of these
elaboration rules may propose operators for the agent
to perform.

• Select an operator to apply from among the operators
that are proposed by the elaboration rules.

• Execute the operator. This may involve issuing
commands to manipulate the external environment.

The following capabilities in Soar make this decision
cycle mechanism effective for controlling agents. A
nonmonotonic reasoning mechanism is used to maintain
consistency of working memory. When an elaboration
rule fires and creates new working memory elements,
those working memory elements remain only as long as
the triggering conditions of the rule are true; if they
become false, the working memory elements are
retracted. In a dynamic environment such as Steve's,
where the input values to Soar are continually changing,
this mechanism helps to maintain consistency between
working memory and the environment. Another helpful
feature is the ability to write explicit rules for deciding
between proposed operators, called preference rules.
These preference rules thus make explicit the basis for
arbitrating between alternative actions, which is helpful in
pedagogical agents that are capable of multiple
pedagogical actions.

The state machine compilation approach
The state machine compilation approach, as

exemplified in PPP Persona, addresses the issue of real-
time adaptation of agent behavior, while limiting the
amount of rendering computation required. As in the

behavior sequencing approach, this approach composes
behaviors out of animation primitives, consisting of
individual animation frames and uninterruptible image
sequences. However, unlike the behavior sequencing
approach, the behaviors are executed by a state machine
that can adapt at run time to student actions. This
approach is based in part on the approach used in the
Persona architecture developed at Microsoft Research
(Balletal 1997).

Presentation generation proceeds through the
following steps. Prior to execution of the plan, the
persona's behaviors are compiled into a state machine
called a behavior monitor. The behavior monitor
executes the sequences of primitive behaviors used in
more complex behavior sequences, and combines these
with unplanned behaviors such as idle-time actions
(breathing or tapping a foot) and reactive behaviors (such
has hanging suspended when the user picks up and moves
the persona with the mouse). The behavior monitor
defines a space of possible behaviors for the persona.
Then for any given presentation, a multimedia presen-
tation planner generates a set of presentation actions to be
performed, and a schedule for performing them, with
qualitative or quantitative temporal constraints. When
behavior execution is initiated, the persona follows the
preliminary schedule. The behavior monitor may execute
additional actions. These in turn may require the schedule
to be updated, subject to the constraints of the presen-
tation plan. The result is behavior that is adaptive and
interruptible, while maintaining coherence to the extent
possible.

5. Knowledge Representations for
Pedagogical Agents

All pedagogical agents require some sort of
knowledge representation describing the subject of
instruction. These representations should be flexible
enough to support the wide range of pedagogical
functions supported by these agents. They should also
facilitate knowledge acquisition or authoring, to facilitate
the integration of pedagogical agents into instructional
materials. These requirements constrain the types of
knowledge representations that may be used.

Steve and Adele both support a wide range of
pedagogical actions, and address the needs of knowledge
acquisition; their representation is perhaps the most
highly constrained. The representation of task knowledge
used in these agents is hierarchical plans. Such hier-
archical descriptions facilitate authoring, because it is
usually relatively easy for most subject matter experts to
conceptualize a task as a hierarchical set of steps and
substeps. Each step in Steve is implemented as a Soar

operator that can be executed by Steve's decision-making
mechanism.

Steve's hierarchical plan representation is augmented
relations between steps: causal links and ordering
constraints. These facilitate reasoning about the relevance
of task steps in the current situation, and explanation of
the rationales for actions. Figure 5 shows an example
task description in Steve, for performing a functional test
of the console shown in Figures 1 and 2. The task has
three steps: to press the function test button, to check the
alarm lights for illumination, and to extinguish the alarm
lights. Each causal link identifies the desired effect of a
step, and a subsequent step that depends upon this effect.
For example, pressing the function test button causes the
console to change state to test-mode, which makes it
possible to check the alarm lights. Ordering constraints
define a partial ordering between steps. For example, the
function test button must be pressed before the alarm
lights can be checked.

Task: functional-test

Steps:
press-functional-test
check-alarm-light
extinguish-alarm

Causal links:
press-function-test achieves test-mode

for check-alarm-light
check-alarm-light

achieves'know-whether-alarm-functional
for end-task

extinguish-alarm achieves alarm-off for end-task

Ordering constraints:
press-function-test before check-alarm-light
check-alarm-light before extinguish-alarm

Figure 5. A plan for Steve

Adele employs a similar hierarchical plan represen-
tation, but the preconditions and effects of each step are
made explicit, instead of being implied by the causal
links. The reason for this is that Adele generates
explanations differently from Steve, and therefore does
not require the same causal link structures. When Steve
explains a step, it is in terms of the results that that step
achieves. Adele, in contrast, explains steps in terms of
motivating facts about the domain. For example, if a
student asks why a chest X-ray should be ordered the
explanation should be about why an X-ray is important
for this type of case. Adele's plans also differ because
they can include multiple possible actions that the student
might choose take, depending upon the situation.

Team tasks are represented in these frameworks by
assigning roles to task steps. The task thus describes what
the team as a whole will need to do to perform the task.
When causal links exist between steps performed by
different roles, these define the interrelationships between
roles. A Steve agent tutoring a student in a team setting
can use this information to explain to the student how his
actions affect the actions of other team members. The
interactions between roles also govern the nonverbal
gestures that Steve employs. If a Steve agent is waiting
for another team member to complete a step in the task,
he indicates this by turning and looking at the other team
member. Gaze between team members is an effective
indicator of the relationships between roles.

These plan representations are simpler than the
complex plan representations that sometimes appear in
the planning community. This was done in part to make
authoring easier. For example, the author has limited
ability to define constraints on variable bindings; complex
variable binding mechanisms are difficult for non-
programmers to understand, and are therefore typically
omitted from instructional authoring tools. Nevertheless
work is required to mediate between notations familiar to
subject matter experts and notations used by Steve and
Adele. Multiple techniques are being employed to bridge
this gap. Graphical diagramming tools have been
developed that aid authors in creating hierarchical tasks
descriptions and expressing the relationships between
plan steps. We are also experimenting with machine
learning techniques that allow Steve to generalize task
descriptions automatically by experimenting on the
simulation environment to see how changes to the plan
affect the outcome (Angros et al 1997).

6. Summary
Pedagogical agents are an interesting application of

autonomous agent technology, which is fast finding its
way into practical applications. Adele is currently being
readied for inclusion in several on-line courses, in a range
of different departments at USC. Herman and Cosmo
have been evaluated closely in large-scale empirical
evaluations. PPP Persona has been applied to a variety of
applications, and is available for download over the
World Wide Web.

Pedagogical agents bridge the gap between so-called
believable agents and other kinds of intelligent agents.
Their behaviors and expressions are deliberately designed
in order to appear lifelike and responsive to the student.
However, it is still necessary for these agents to have a
rich representation of knowledge of the task domain, in
order to support a wide range of pedagogical capabilities.

Acknowledgments
The following CARTE staff and students contributed

to the work presented here: Rogelio Adobbati, Richard
Angros, Rajaram Ganeshan, Kate Labore, Andrew
Marshall, Ben Moore, Erin Shaw, and Marcus Thiebaux.
Our collaborating organizations provided indispensable
assistance: Randy Stiles's group at Lockheed Martin,
Allen Munro's group at USC Behavioral Technologies
Laboratory, Drs. Dimetriatis, William La, Sidney Ontai,
and Beverly Wood at the USC Health Sciences Campus,
and Carol Horwitz and Craig Hall at Air Force Research
Laboratory. This work was supported by the Office of
Naval Research under contract N00014-95-C-0179, and
by an internal research and development grant from the
USC / Information Sciences Institute.

References
Andre, E., Rist, T., and Müller, J. , 1998. Integrating

reactive and scripted behaviors in a life-like presentation
agents. In K.P. Sycara and M. Wooldridge (Eds,)., Proc.
of the Second International Conference on Autonomous
Agents, pp. 261-268, ACM Press.

Angros, R. Jr., Johnson, W.L. and Rickel, J., 1997.
Agents that Learn to Instruct, AAAI'97 Fall Symposium
Series: Intelligent Tutoring Systems Authoring Tools,
Nov. 1997.

Ball, G., Ling, D., Kurlander, D., Miller, J., Pugh, D.,
Skelly, T., Stankosky, A., Thiel, D., van Dantzich, M.,
and Wax, T., 1997. Lifelike computer characters: Th
Persona project at Microsoft, in Bradshaw, J.M. (Ed.),
Software Agents, AAAI/MIT Press, Menlo Park, CA.

Bates, J., Loyall, A.B., and Reilly, W.S., 1992.
Integrating reactivity, goals, and emotion in a broad
agent, in Proc. of the Fourteenth Annual Conference of
the Cognitive Science Society, pp. 696-701.

Blumberg, B.M. and Galyean, T.A., 1995. Multi-
level direction of autonomous creatures for real-time
virtual environments. SIGGRAPH 95 Conference
Proceedings, pp. 47-54.

Chan, T.-W., 1996. Learning companion systems,
social learning systems, and the global social learning
club. Journal of AI in Education 7 (2), 125-159,1996.

Chan, T.-W. and Baskin, A.B., 1990. Learning
companion systems, in Frasson, C, and Gauthier, G.
(Eds.), Intelligent Tutoring Systems: At the Crossroads of
Artificial Intelligence and Education, ch. 1.

Clancey, W.J., 1983. The epistemology of a rule-
based expert system: A framework for explanation.
Artificial Intelligence 20(3), pp. 215-251.

Dillenbourg P., 1996. Some technical implications of
distributed cognition on the design on interactive learning
environments. Journal of Al in Education 7(2), 161-179.

Doorenbos, R.B., Etzioni, O., and Weld, D.S., 1997.
A scalable comparison-shopping agent for the World-

Wide Web, in Johnson, W.L. and Hayes-Roth, B., 1997
(Eds.), Proceedings of the First International Conference
on Autonomous Agents, ACM Press.

Elliot, C. and Brzezinski, J, 1998. Autonomous
agents as synthetic characters, AI Magazine 19(2), pp. 13-
30.

Firby, R.J., 1994. Task networks for controlling
continuous processes. In Proceedings of the Second
International Conference on AI Planning Systems.

Foner, L.N., 1997. Entertaining agents: A case study,
in Johnson, W.L. and Hayes-Roth, B., 1997 (Eds.),
Proceedings of the First International Conference on
Autonomous Agents, ACM Press.

Hill, R.W. and Johnson, W.L., 1993. Designing an
Intelligent Tutoring System Based on a Reactive Model of
Skill Acquisition, Proceedings of the World Conference
of Artificial Intelligence in Education.

Johnson, W.L. and Rickel, J., 1998. Steve: An
animated pedagogical agent for procedural training in
virtual environments. SIGART Bulletin 8, pp. 16-21.

Johnson, W.L., Rickel, J., Stiles, R., and Munro, A.,
1998. Integrating pedagogical agents into virtual environ-
ments. Presence 7(5), forthcoming.

Laird, J.E., Newell, A., and Rosenbloom, P.S., 1987.
Soar: An architecture for general intelligence. Artificial
Intelligence 33(1), pp. 1-64.

Lester, J.C., Converse, S., Stone, B., Kahler, S., and
Barlow, T., 1997. Animated pedagogical agents and
problem-solving effectiveness: A large-scale empirical
evaluation. In Proceedings of the Eighth World
Conference on Artificial Intelligence in Education, pp.
23-30. IOS Press, Amsterdam.

Lester, J.C. and Stone, B.A., 1997. Increasing
believability in animated pedagogical agents. In Johnson,
W.L. and Hayes-Roth, B. (Eds.), Proceedings of the First
International Conference on Autonomous Agents, pp. 16-
21, ACM Press.

Müller, J.P., 1996. The Design of Intelligent Agents:
A Layered Approach, Springer-Verlag, Berlin.

Murphy, R.R. and Hershberger, D., 1996.
Classifying and recovering from sensing failures in
autonomous mobile robots. In Proceedings of AAAI-96,
pp. 922-929, Morgan Kaufmann, Menlo Park, CA.

Rickel, J. and Johnson, W.L., 1998. Animated agents
for procedural training in virtual reality: perception,
cognition, and motor control. Applied Artificial
Intelligence Journal, to appear.

Rickel, J. and Johnson, W.L., 1997. Intelligent
Tutoring in Virtual Reality: A Preliminary Report, Proc.
of the Intl. Conf. on Artificial Intelligence in Education,
pp. 294-301.

Johnson, W.L. and Shaw, E., 1997. Using Agents to
Overcome Deficiencies in Web-Based Courseware,
Proceedings of the AI-ED 97 Workshop on Pedagogical
Agents, pp. 48-55.

Tambe, M., Johnson, W.L., Jones, R.M., Koss, F.,
Laird, J.E., Rosenbloom, P.S., and Schwamb, K., 1995.
Intelligent agents for interactive simulation environments,
AI Magazine (6)1, pp. 15-39.

Towns, S.G., Callaway, C.B., Voerman, J.L., and
Lester, J.C., 1998. Coherent gestures, locomotion, and
speech in life-like pedagogical agents. IUI '98: 1998
International Conference on Intelligent User Interfaces,
pp. 13-20, ACM Press.

Towns, S.G., FitzGerald, P.J., and Lester, J.C., 1998.
Visual emotive communication in lifelike pedagogical
agents. In Proceedings of the Fourth International
Conference on Intelligent Tutoring Systems, San Antonio,
TX.

Wenger, E., 1987. Artificial intelligence and tutoring
systems: Computational and cognitive approaches to the
communication of knowledge. Los Altos, CA: Morgan
Kaufmann Publishers, Inc.

\ »

LOCKHEED MA

Lockheed Martin Missiles & Space
Advanced Technology Center
3251 Hanover Street, Palo Alto, California 94304-1191

In reply refer to:
LMMS-DB/303-98
22 October 1998

Program Officer
Office of Naval Research
Code 342 - Helen Gigley
800 North Quincy Street
Arlington, VA 22217-5660

Subject: Contract No. N00014-95-C-0179 "Virtual Environments for Training"

Reference: (a) CLIN 0004, CDRL A001 "Progress Report"

Enclosure: (1) Progress Report covering the period 4/1/98 - 6/30/98 (1 hard copy &
1 diskette)

Dear Dr. Gigley:

The report required per Reference (a) is provided as Enclosure (1).

Should you have questions or require additional information, please contact me at
650/424-2006, or by fax at 650/424-3330. I can also be reached by email at
davina.brown @ lmco.com

Very truly yours,

)avina Brown
Contract Specialist

cc: Director, Naval Research Laboratory, Attn: Code 2627
Washington, DC 20375 (w/ 1 copy of enclosure)

</ Defense Technical Information Center
8725 John Kingman Road, Suite 0944
Fort Belvoir, VA 22060-6218 (w/2 copies of enclosure)

DCMC/Lockheed Martin, B/107, Sunnyvale, CA (w/ 1 copy of enclosure)

